北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池技术正文

前沿:硅碳负极材料最新研究进展

2017-07-19 10:33来源:硅酸盐学报关键词:硅碳负极锂电负极锂离子电池收藏点赞

投稿

我要投稿

近来,Lu等设计并合成了一种特殊结构的碳包覆多孔硅材料(nC–pSiMPs),其中,多孔微米硅(pSiMPs)由一次硅纳米颗粒堆积而成,其内部硅纳米颗粒表面无碳包覆层,碳层仅涂覆于微米多孔硅外表面。

该材料是以商业化SiO微粒为原料,以间苯二酚–甲醛树脂为碳源,在Ar气氛下高温碳化处理得到碳包覆层,同时内核SiO经高温歧化反应生成Si和SiO2,HF刻蚀后得到硅与空腔的体积比为3:7的多孔硅。该结构中,空腔尺寸能够很好的容纳硅在脱嵌锂时的体积变化而不使碳壳层破裂,保证了材料结构的稳定性;同时,包覆于多孔硅外表面的碳壳层能阻止电解液浸入多孔硅内部,减少硅与电解液的接触面积,仅在微米硅外表面碳包覆层上形成稳定的SEI膜。

相应地,对于内部硅纳米颗粒也包覆碳层的材料(iC-pSiMP),电解液与活性物质接触面积更大,同时硅体积膨胀易导致碳层破裂,内部硅纳米颗粒裸露并与电解液接触,导致充放电循环过程中产生更厚的SEI膜。

因而,nC-pSiMPs电极(活性物质负载量为0.5mg/cm2)较iC-pSiMP和pSiMP具有更优异的循环稳定性,在1/4C(1C=4.2A/g活性物质)循环1000次时可逆容量高达1500mA˙h/g。

此外,该电极材料经100次循环后,厚度从16.2μm增至17.3μm,膨胀率仅为7%,其体积比容量(1003mA˙h/cm3)也远高于商业化石墨(600mA˙h/cm3)。

1.2嵌入型

嵌入型硅碳复合材料是指将硅颗粒通过物理或者化学手段分散到碳载体中,硅颗粒与碳基体结合紧密,形成稳定均匀的两相或多相体系,依靠碳载体为电子和离子提供传输通道和支撑骨架,提供材料结构的稳定性。

嵌入型硅碳复合材料中,硅含量一般较低,可以贡献的容量较少,因此其可逆比容量也通常较低,但是在复合材料中存在大量的碳材料,所以其循环稳定性一般较好。

1.2.1石墨

石墨是目前应用最广泛的锂离子电池负极材料,分为天然石墨和人造石墨两种,原料来源广泛且价格低廉。石墨具有层片状结构,充放电过程中体积变化小,循环稳定性能良好,可缓冲充放电过程中的硅结构重建引发的体积膨胀,避免负极材料结构坍塌,适合作为缓冲基体;同时石墨良好的电子导电性很好地解决硅电子导电性差的问题。但石墨常温条件下化学性质稳定,很难与硅产生强的作用力,因而目前主要是通过高能球磨和化学气相沉积2种方法制备硅/石墨复合材料。

Pengjian等采用高能球磨法将石墨和硅粉混合制得硅/石墨复合材料。研究表明,该复合材料中没有产生合金相,其首次可逆比容量为595mA˙h/g,Coulomb效率为66%;循环40次后比容量为469mA˙h/g,每次循环的容量损失率约为0.6%。

Holzapfel等采用化学沉积法(CVD)将硅纳米颗粒沉积在石墨中,当硅质量分数为7.1%时,电极的可逆容量为520mA˙h/g,其中硅贡献的比容量超过2500mA˙h/g,循环100次后硅贡献的比容量仍高达1900mA˙h/g。

石墨与硅之间的作用力较弱,很难形成稳定的复合结构。因此,石墨一般被用作导电骨架或介质,与其他硅/碳材料共同构建结构稳定的三元复合体系。对于锂离子电池负极材料来说,硅/无定形碳/石墨(Si–C–G)是现今较为流行也是最早开始研究的三元复合体系,其制备方法主要有机械混合-高温热解法、溶剂热-高温热解法和化学气相沉积法等。

对于Si–C–G复合材料而言,硅比容量最大(约3579mA˙h/g),为石墨及热解碳的10倍,是决定复合材料容量的关键活性物质,可通过调控硅在复合体系中的含量来设计容量;石墨作为支撑材料,可改善硅的分散效果及导电性;无定形碳作为粘结剂和包覆碳,将硅粉与石墨有效一结合起来,并与石墨共同形成导电炭网结构,同时,无定形碳还能改善硅与电解液的界面性能。

因此,基于硅-无定形碳-石墨3种材料的有机结合,能有效提高硅负极的电化学性能。

Kim等采用机械化学球磨与造粒过程相结合的方法,将硅纳米颗粒与较大颗粒的鳞片石墨混合造粒,使得较小的硅纳米颗粒嵌入到鳞片石墨夹缝中,进而制备了硅–石墨/无定形碳复合材料。该复合材料很好的解决了硅导电性差和体积膨胀的问题,所得复合材料具有568mA˙h/g的可逆比容量,首次Coulomb效率可达86.4%。

Lee等将硅纳米颗粒(100nm)和天然鳞片石墨(~5μm)加入到沥青溶液中,经球磨-造粒-高温热解碳化得到Si–G–C三元复合材料,其可逆比容量为700mA˙h/g,首次效率高达86%,50次循环后比容量几乎没有衰减。

Ma等将硅纳米颗粒、聚氯乙烯(PVC)和膨胀石墨溶解于四氢呋喃(THF),蒸发溶剂后碳化,得到硅–碳–膨胀石墨复合材料。该材料在200mA/g下,可逆容量为902.8mA˙h/g,循环40次后容量保持率为98.4%。

研究发现,循环过程中因膨胀而破碎的硅纳米颗粒仍能较好的分散在膨胀石墨上,这主要归功于膨胀石墨的多孔性和良好的柔韧性。

综上所述,硅/石墨或硅/石墨/碳体系容量普遍不高,在1000mA˙h/g以下,硅含量一般较低,减少硅使用量的目的在于提升复合材料容量的同时尽可能保证材料各项性能与石墨一致,特别是首次Coulomb效率和循环寿命,以期提高现有电池体系的质量与体积能量密度。目前的设计容量为450~600mA˙h/g,但考虑到目前爆发式的新能源车市场对里程和寿命的需求,开发300~350W˙h/kg的动力锂电池是必然趋势,因此高容量硅基材料的开发也势在必行。

1.2.2碳纳米管/纳米纤维

相对于石墨颗粒,碳纳米管/纳米纤维(CNT/CNF)得益于其高长宽比的优势,与硅复合后,利用其导电性及网络结构可以构建连续的电子传递网络,缓解循环过程中硅的体积变化,抑制颗粒团聚,从而提高硅基负极材料的电化学性能。

Camer等利用化学合成法得到酚醛聚合物-硅复合材料,然后在惰性气氛下碳化得到Si/SiOx/碳纤维复合材料。碳纤维的存在增强了电极的导电性,同时能够限制硅脱嵌锂过程中的膨胀和收缩。该复合材料在500mA/g电流密度下,比容量达2500mA˙h/g,并表现出良好的循环稳定性能。

Mangolini等将量子点Si溶液、CNTs和聚乙烯吡咯烷酮(PVP)涂覆于铜箔上,并在惰性气氛下热处理,得到Si/CNTs复合材料,其中Si粒子在CNTs中分散均匀,两者之间形成异质结层。该材料循环200次后的充电比容量仍可达1000mA˙/g,其Coulomb效率为99.8%。

另外,将CNT和CNF引入到Si@C复合材料中,借助三种材料间的协同效应也有助于进一步强化材料的电化学性能。

Zhang等将CNT和CNF和Si@C混合,制备出容量高且循环性能优异的复合材料(Si@C/CNT&CNF)。其中,CNT和CNF与硅表面的碳包覆层在复合材料内构建出高效的电子传递网络,将大部分Si@C颗粒连接在一起,强化复合材料的导电性;同时CNT和CNF与Si@C相互交织混合,在复合材料内形成的孔穴,可承受硅在嵌锂过程中的膨胀,抑制循环过程中传递网络的破裂,进而提升材料的循环稳定性。

该材料在300mA/g电流密度下循环50次后容量仍可达1195mA˙h/g,而未掺杂CNTs&CNFs的Si@C材料循环稳定性较差,50次后容量仅有601mA˙h/g,未包覆碳的纯硅纳米颗粒经15次循环后容量衰减至几乎为0。

1.2.3石墨烯

除石墨和碳纳米管/纳米纤维外,石墨烯因其优异的导电性、高比表面积和良好的柔韧性等特点,也成为改性硅基负极的热点材料之一。研究者已开发出几种制备锂离子电池硅/石墨烯复合负极材料的方法。

Chou等通过将硅纳米颗粒与石墨烯简单机械混合,所得材料首次可逆比容量为2158mA˙h/g,30次循环后仍保持在1168mA˙h/g。

Chabot等通过将硅纳米颗粒和氧化石墨烯混合液冻干后,在含有10%(体积分数)H2的Ar气氛下热还原制备硅/石墨烯复合材料。该材料的初始放电容量为2312mA˙h/g,经100次循环后容量保持率为78.7%。

Luo等设计了一种气溶胶辅助-毛细管驱动自组装方法,将氧化石墨烯与硅超声混合,加热形成雾滴后,由气体将混合物带入碳化炉加热还原碳化,从而得到一种褶皱石墨烯包覆硅复合材料。该材料在1A/g电流下循环250次后容量仍可达到940mA˙h/g,首次循环后平均每次容量损失仅为0.05%。

研究表明,将石墨烯(G)与硅复合可改善硅负极的导电性及循环稳定性,但仅仅引入石墨烯并不能最大程度上改善硅负极材料的电化学性能,通过将硅、石墨烯和无定形热解碳碳结合到一起,利用三者间的协同作用有望得到电化学性能更优的硅基负极材料。

Zhou等设计了石墨烯/Si@C复合材料,通过在硅纳米颗粒表面包覆一层热解碳保护层,既有利于硅的结构稳定性,又能强化硅颗粒和石墨烯界面的结合能力,促进界面间的电子传输。这种具有双层保护结构的复合材料在300mA/g电流密度下循环100次后的可逆容量可达902mA˙h/g。

Li等先将聚苯胺接枝到硅纳米颗粒表面,随后利用聚苯胺与石墨烯间的π–π作用和静电引力,在颗粒表面自组装包覆石墨烯后,经高温碳化得到Si@C/G复合材料。该复合材料在50mA/g电流密度下的可逆容量为1500mA˙h/g,在2000mA/g的高电流密度下的容量也超过了900mA˙h/g,且循环300次后的容量保持率可达初始容量的70%。

Zhou等将带正电荷的聚氯化二烷基二甲基胺(PDDA)包覆带负电荷的硅纳米颗粒,然后与带有负电荷的氧化石墨烯在静电作用下进行自组装,碳化得到具有包覆结构的Si@C/G复合材料。该材料在100mA/g电流密度下,150次循环后仍有1205mA˙h/g的可逆容量。

Yi等采用相似的方法将PDDA包覆SiO和氧化石墨烯(GO)混合物后,经高温碳化、HF酸刻蚀后得到微孔硅/石墨烯复合材料(G/Si),随后以乙炔为碳源,经高温热解碳化进行碳包覆得到G/Si@C三元复合材料。该材料具有高达1150mA˙h/g的比容量,且循环100次后容量基本保持不变。

投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

硅碳负极查看更多>锂电负极查看更多>锂离子电池查看更多>