北极星

搜索历史清空

  • 水处理
您的位置:电力输配电电网建设技术正文

分析!电力电子设备引起电力系统振荡的问题

2017-04-17 13:06来源:高电压技术关键词:电力系统电力系统电力电子化电力电子设备收藏点赞

投稿

我要投稿

原论文阅读:

清华大学姜齐荣等:电力电子设备会导致电力系统振荡?

自20世纪50年代之后,电力半导体技术得到了长足的发展。大量的电力电子器件或者单个或多个串并联后作为电子开关在电力系统中应用,或者组成变换器作为电压源或电流源接入电力系统。为了能够适用于高压大电流的应用场合,在电力电子器件串并联技术的基础上,人们又提出了多种高电压大容量的变换器拓扑结构,如变压器多重化、二极管箝位的多电平变换器、链式变换器、模块化多电平变换器等等。在这些技术的推动下,传统直流输电的容量已达6400MW(4kA/±800kV)[1],单台静止同步补偿器(STATCOM)容量已达到200MVA以上[2]。由于电力电子设备具有体积小、价格低、响应速度快、能够实现精确控制等诸多优点,因此在电力系统的发、输、配、用等各个环节均得到广泛的应用。在发电环节,风力发电全部或部分是通过电力电子变换器接入电网的,而太阳能光伏发电则是全部通过电力电子变换器接入电网。在输电环节,基于大功率电力电子装置的灵活交流输电(FACTS)技术已经发展了近30a[3],静止无功补偿器(SVC)、STATCOM和可控串补(TCSC)等FACTS设备已在输电系统中得到了广泛的应用。高压直流输电(HVDC)已成为远距离大容量输电的首选,而基于全控器件的柔性直流输电(VSC-HVDC)也已经有众多的商业应用。在配电环节,定制电力技术已经得到了初步的应用,该技术包括静态串联补偿器(SSC)、静态电压调整器(SVR)、静态切换开关(SSTS)、备用储能系统(BSES)、配电静止同步补偿器(DSTATCOM)等各种电力电子设备[4]。在用电环节,电力电子装置的应用则更加广泛,如各类直流电源、变频器、有源滤波器(APF)、不间断电源(UPS)等。在微电网和未来的能源互联网中,电能的调控主要由电力电子设备实现。

随着电力系统中电力电子设备及其容量的不断增加,电力系统呈现出明显的电力电子化趋势。这种趋势使得电力系统面临新的问题与挑战,其中影响最大的是电力电子化电力系统中的振荡问题。

1 电力电子化电力系统的振荡问题

电力电子装置接入电力系统后,能否安全稳定运行,主要应考虑两种情况。一种情况是电力系统发生大的扰动后,电力电子装置能否不脱网并且通过调节控制提高系统的安全稳定性;另一种情况是,在系统稳态或发生小扰动情况下,电力电子装置能否安全可靠地运行并发挥其调节控制功能。第1种情况可以归结为电力电子装置在各种低电压、高电压或三相电压不对称工况下的穿越能力,属于暂态问题,本文暂不考虑。本文主要讨论第2种情况,其本质是电力电子装置的振荡问题。传统电力系统的振荡主要分为全局的低频振荡(0~3Hz)及局部发电机与外部网络的次同步振荡(<50Hz)。因电力电子装置具备优良的性能,因此在电力系统中应用越来越普遍,开始时其引起的振荡问题并未引起人们的重视。对于电力电子装置接入电网后引起的局部振荡问题,大多可通过修改其控制策略加以避免,如1977年10月在美国北DAKOTA的SquareButte地区因安装高压直流输电系统的测试中出现的HVDC引起邻近汽轮发电机的次同步振荡问题[5]。此时,人们对电力电子装置可能引起振荡的潜在危害并没有思想准备。随着电力电子装置应用的日益广泛,在实际工程中,人们发现当众多电力电子变换器并联运行时,某些情况下也能够导致振荡。1995年,在苏黎世发生了四象限电力机车与牵引网间的振荡现象[6],这是典型的多个电力电子装置与供电系统之间出现的振荡现象。此后,电力电子装置引起振荡的问题才逐步引起人们的关注。2007年12月,我国大秦线的和谐号动车(HXD1)因投入机车数过多出现了机网振荡问题[6]。经过分析,认为造成振荡的原因主要是牵引供电网比较弱且机车台数过多而其控制策略不合理。2009年12月,上海洋山港四象限变频器提升机群引起了10Hz左右的振荡,进而激发电压闪变,10kV母线上有功功率和无功功率的变化振荡情况如图1所示。2010年,内蒙狼尔沟弱电网与STATCOM、双馈型风力发电机发生振荡。同年,呼伦贝尔电厂与HVDC和串补间发生次同步振荡,如图2所示。2012年12月,河北沽源风电场双馈型风力发电机与串联补偿电容产生次同步振荡,如图3所示[7]。2015年初,新疆哈密三塘湖电网风电场与火电机组发生振荡,如图4所示,其后又多次出现类似的振荡,而因为振荡还导致3台火电机组跳闸。在配电网侧,人们也发现APF与并联无功补偿电容器间会发生振荡[8]。图5为某STATCOM装置在弱系统条件下出现振荡的波形[9]。上述振荡问题有的通过改进电力电子装置的控制策略已经解决,有的通过安装振荡抑制装置已经解决,但还有部分振荡问题目前还在研究之中。如,新疆哈密三塘湖电网风电场与火电机组的振荡问题其机理还不清楚,目前采取的对策是一旦发生振荡就切除风电场,这将引起大量弃风并造成巨大的浪费。由于电力系统电力电子化趋势明显,其振荡问题已经对电力电子装置的推广应用产生了不良影响,对系统的安全稳定运行造成了危害,因此探寻振荡的机理,找出消除振荡的措施是十分必要的。本文对这些振荡的产生机理及其抑制措施进行梳理和归纳。

2 电力电子装置引起振荡的机理分析

对电力系统振荡机理的研究已经取得了许多成果[10-13],而电力电子化电力系统的振荡有其特殊性,其中最为明显的是电力电子装置惯性小、响应速度快,因此这类振荡的频率显著提高了,所以不能完全借用已有的成果。通过对上节所述振荡现象的分析,可以将振荡分成4类:电力电子装置内部的振荡、电力电子装置与系统间的振荡、多变换器并联运行时变换器之间的振荡以及电力电子装置与电机之间的次/超同步振荡。本节将利用数学分析从物理机理上探寻上述振荡产生的原因。

2.1振荡产生的数学机理

根据非线性动力学的理论可知,非线性系统的振荡大致可分为4类:系统周期性振荡、准周期振荡、系统混沌解对应的非周期振荡和平衡点附近运动轨迹对应的负/弱阻尼振荡[14]。但在实际非线性系统中,因存在测量误差,严格的周期振荡、准周期振荡与混沌振荡很难区分,因此可以认为是一种幅值较大的振荡,而平衡点附近的负/弱阻尼振荡是幅值很小的振荡。

2.1.1周期性振荡

若非线性自治动力学系统的状态变量为x(t),输入变量为y(t),描述系统行为的微分方程组为

式中:f为系统的状态方程,g为系统的等式约束。若存在(xe(t),ye(t))满足方程(1),则称之为方程(1)的解。

设T为振荡周期,为一常数,若有

(xe(t),ye(t))=(xe(t+T),ye(t+T))(xe(t),ye(t))=(xe(t+T),ye(t+T))(2)

则该解为周期解或振荡解。

如当参数0<λ<1时,非线性系统[15]的解为

图3振荡发生时的母线电压及系统电流

图4 发电机组大轴的模态1振荡

原标题:清华大学 姜齐荣等:电力电子设备会导致电力系统振荡?
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

电力系统查看更多>电力系统电力电子化查看更多>电力电子设备查看更多>