北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能材料正极材料技术正文

全面解读尖晶石型高压镍锰酸锂

2017-03-28 09:26来源:能源学人作者:小强关键词:高压镍锰酸锂正极材料锂离子电池收藏点赞

投稿

我要投稿

表1. 使用直流极化/去极化测试法(DC)和交流阻抗法(AC)得到的D-LNMO和O-LNMO的离子传导率和扩散率结果

二、D-LNMO和O-LNMO电极与电解液界面的交换电流密度测试[2]

对于O-LNMO而言,在x=0.01-0.60的范围内,即随着去锂化程度的增加,电极界面的交换电流密度不断增长(~0.21-6.5 mA/cm2)。对于D-LNMO而言,在x=0.01-0.04的范围内(对应的是图2中的4.0V处的电压平台),随着去锂化程度的增加,电极界面的交换电流密度逐渐下降;在x=0.04-0.60的范围内,随着去锂化程度的增加,电极界面的交换电流密度又开始上升(0.65-6.8 mA/cm2)。以上数量级的电流交换密度足以满足电池一定充放电倍率的要求。

表2.不同电极材料的交换电流密度数据

图7. 去锂化过程中,D-LNMO 和O-LNMO的交换电流密度变化曲线。

图8. 不同去锂化状态下,D-LNMO和O-LNMO的颗粒尺寸与过电位关系图。

当D-LNMO 和O-LNMO的颗粒直径都为6μm时,O-LNMO在x=0.60和0.01时的过电位分别为2.6 mV 和77.4 mV(图8);而D-LNMO来说,分别是2.5 mV和26 mV。比较结果表明:在低荷电状态下,主要是界面动力学限制了LNMO的电化学性能;在高荷电状态下,LNMO的电化学性能主要由离子扩散控制。另外,值得注意的是离子扩散要比电子传导低4个数量级。

综合分析以上讨论的结果,LNMO倍率性能的控制因素是离子扩散而并非是电子传导或者界面界面动力学因素。

有序和无序LiNi0.5Mn1.5O4的制备方法:

LiNi0.5Mn1.5O4粉末由NEI公司提供。LNMO粉末在340MPa压力下施力60s后形成直径为14mm的圆柱状前驱体。前驱体在空气中 1000℃条件下煅烧24h,然后在725℃条件下煅烧12h后可得到无序LNMO,即D-LNMO,升温和降温速率均为10℃/min。前驱体在体积比为1:1的氩/氧混合气中1000℃条件下煅烧24h,然后650℃条件下煅烧48h后得到有序LNMO,即O-LNMO,降温速率为1℃/min。以上所得到样品的相对密度为80%-85%。

原标题:全面解读尖晶石型高压镍锰酸锂
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

高压镍锰酸锂查看更多>正极材料查看更多>锂离子电池查看更多>