北极星

搜索历史清空

  • 水处理
您的位置:电力输配电配电自动化技术正文

能源互联网环境下交直流混合配电系统关键技术

2018-09-14 09:42来源:《中国电力》杂志关键词:配电系统配电技术能源互联网收藏点赞

投稿

我要投稿

2.2 关键设备方面

当前,针对直流配电关键设备的研究主要集中在基于电力电子技术的不同电压等级换流器、直流变压器和中高压直流短路器及其相关控制策略方面[30-34]。目前,工程中常用的电压源型换流器(VSC)主要包括两电平换流器、三电平换流器和模块化多电平(MMC)[35-37]。两电平换流器和三电平换流器优点在于工作原理简单,控制系统构造简单,但两电平换流器和三电平换流器均需要大量的开关器件直接串联,投资较大。另外由于采用PWM调制技术,系统损耗相对较高,且输出电压中纹波含量较高。在直流变压器方面,其主要拓扑包括谐振式高压直流变压器、Buck_Buck/Boost直流变压器、谐振开关电容直流变压器、输入串联输出并联直流变压器、MMC型直流变压器等类型,但尚无适应多场景并具备故障穿越能力的兆瓦级中压直流变压器工程化应用。中压直流断路器方面,主要包括机械式、全固态和混合式等3类,国内相关厂家已开发了开断能力大于10 kA的10 kV混合式直流断路器样机,但成本较高、额定通流损耗严重。部分科研单位开发了开断能力大于15 kA的10 kV机械式直流断路器样机,但存在断口绝缘恢复差、小电流开断困难等问题。

为满足能源互联网发展需求,高效消纳光伏、风电等分布式可再生能源,实现集中式或分布式能源生产、消耗、转换等单元互联,开发低成本、高性能的直流配用电关键装备成为当前的关键性技术问题。在电源接入侧,以各类能源及储能接入需求为出发点,重点研发具备高可靠性、高效率、高稳定性的电源侧电力电子接口设备及其分层控制策略。在电网侧,重点研究换流阀强弱电紧凑化布局和大电流应力下的优化方法,提出AC/DC换流阀的高可靠设计方案,提出分层分布式控制架构与分区保护架构,实现换流器的可靠保护;采用磁集成技术减小变压器体积和能耗,建立兆瓦级中压直流变压器拓扑优化方案,提出功率快速精准控制策略及故障穿越方法。在用电侧,通过研究宽禁带器件应用技术、多谐振软开关功率变换拓扑和低压高频磁路集成方法,解决变换器拓扑复杂、功率密度较低、一致性较差等问题,同时,整合典型家用电器的电路构架,提出直流化智能化改造方法,实现家用电器能效整体提升。另外,目前快速直流开关主要有机械式和混合式2种。针对机械式开关存在断口绝缘恢复差、开断小电流困难等问题以及混合式开关存在成本高、额定通流损耗高等问题,提出各电压等级直流快速开断方案及拓扑结构,开发高性能、低成本的中低压直流断路器成为目前一项亟待解决的关键性技术问题。

2.3 保护策略方面

交直流配电网的安全稳定运行需要完备可靠的保护策略,目前针对该方面的研究主要集中在各类故障对继电保护的影响分析、故障特性分析、保护策略制定等方面[38-41]。部分高校已开展直流配电系统的故障特征与原理分析,提出了多端柔性直流配电网保护方案及限流方法。部分厂商研发了针对换流阀、直流变压器等直流设备的保护装置,但缺乏系统级的保护技术研究及工程应用。

直流配电系统的故障根据各类设备和系统结构的不同,可分为交流侧故障、换流器故障、直流侧故障三大类。交流侧故障主要指并网变流器与交流电网之间交流母线上的故障以及变压器故障,以线路短路故障为主;变换器故障主要有阀短路、桥臂短路、变换器交流或直流侧出口短路、脉冲触发系统故障、冷却系统故障等;直流侧故障主要指直流母线故障和直流线路故障,包括接地故障、极间故障及断线故障,另外还存在绝缘水平下降、低电压或过电压等不正常运行方式。

交直流混合配电系统电源类型多、故障类型复杂,多类型换流站和储能的控制策略、分布式电源功率波动对于故障暂态特性影响大,系统运行方式改变后保护原理和定值难以适应,电力电子设备耐受过电压、过电流的能力差,系统直流短路阻抗小,故障对直流母线电压波动影响大。因此,应重点研究分布式电源并网变压器、换流阀等在不同控制方式下的多电压等级直流配用电系统的故障机理;研究多电压等级直流配用电系统在不同拓扑结构下的故障特征。进一步研究基于多点信息的直流配电系统故障快速识别与定位方法,提出多电压等级直流配电系统保护配置方案,并结合相关需求研制直流配电系统保护、测量、控制一体化系列装置及直流用电系统漏电保护装置。

2.4 运行控制方面

交直流混合配电系统的电源主要包括交流配电网和太阳能、风电等多种分布式电源,负荷包括常规交、直流负荷以及储能设备、电动汽车充电站等双向可控负荷。运行控制的基本要求是通过对各类设备的主动控制,实现分布式能源的充分利用以及电源与负荷的高效、动态匹配。目前,直流配电网的电压控制方面的研究主要包括主从控制方式、电压下垂控制方式和电压裕度控制等[42-44],主要集中在含分布式电源的直流配电网优化调度、典型运行方式及切换方法、分层控制协调控制策略等方面[45-49]。相关高校等单位围绕含多换流器的低压直流系统控制架构、稳定控制方法展开研究,但系统结构较为简单,时间尺度短,源荷类型单一。

为推动交直流配电技术发展应用,在运行控制方面尚需开展深入研究。重点研究多换流器并网及多电压等级直流配电系统状态精确划分方法,构建多重状态转换模型。建立多电压等级直流配电系统分层控制架构,研究中压直流配电网多换流器并网分散协调控制策略,分析基于惯性环节的低压区域子网电压稳定控制方法,提出区域子网多换流器间环流抑制方法。结合分布式电源及负荷预测结果,研究基于状态估计的系统网络重构方法,构建直流源荷匹配的系统滚动优化调度模型,提出满足源荷匹配的直流配电系统能量优化控制方法。

3 结论

为满足能源互联网智能化发展需求,未来配电网将呈现出交直流混合的形态。交直流混合配电网的应用对于减少一次设备投资、降低配电网损耗、减少无功补偿设备、提升系统运行效率具有重要意义。本文重点针对交直流混合配电网发展的关键技术研究现状及相关技术需求开展分析。交直流混合配电系统应尽快细化典型应用场景划分原则和电压序列选取原则,并进一步明确涵盖典型网架、接线方式、一二次设备配置等方面的典型供电模式;加快研制快速开关设备、兆瓦级直流变压器以及低压直流用电高效高功率密度多输出电能变换设备;提出满足分布式电源及各类负荷灵活接入的优化运行方式及分压分层控制方法;明确直流混合配电网的故障识别方法、故障穿越及快速恢复方法、典型保护配置方案;根据实际工程需要提出交直流混合配电网关键设施及多元化电源、负荷接口典型设计方案。

作者简介:

李敬如(1969—),女,高级工程师(教授级),从事电力系统规划、电力系统技术经济分析等方面研究工作

韩丰(1962—),女,高级工程师(教授级),从事电力系统规划及设计等方面研究工作

姜世公(1983—),男,通信作者,高级工程师,从事交、直流配电系统规划及技术经济评价等方面研究工作

李红军(1971—),男,高级工程师(教授级),从事配电系统规划及设计等方面研究工作

参考文献

[1]鲁刚, 王雪, 陈昕, 等. 城市能源变革下智慧能源系统建设研究[J]. 电力需求侧管理, 2018, 20(2): 1-4.

LU Gang, WANG Xue, CHEN Xin,et al. Research on smart energy system development for city energy revolution[J].Power Demand Side Management, 2018, 20(2): 1-4.(1)

[2]苏星, 逄锦福. 金砖国家可再生能源市场前景与" 金砖+”模式应用探讨[J]. 中外能源, 2018, 23(3): 10-18.

SU Xing, PANG Jinfu. Prospect of renewable energy market in BRICS and the application of "BRICS+" model[J].Sino-Global Energy, 2018, 23(3): 10-18.(0)

[3]齐绍洲, 李杨. 能源转型下可再生能源消费对经济增长的门槛效应[J]. 中国人口·资源与环境, 2018, 28(2): 19-27.

QI Shaozhou, LI Yang. Threshold effects of renewable energy consumption on economic growth under energy transformation[J].China Population, Resources and Environment, 2018, 28(2): 19-27.(1)

[4]周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904.

ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang,et al. Technology features of the new generation power system in China[J].Proceedings of the CSEE, 2018, 38(7): 1893-1904.(1)

[5]辛培哲, 蔡声霞, 邹国辉, 等. 适应经济社会发展的智能电网发展战略研究[J]. 分布式能源, 2018, 3(1): 21-27.

XIN Peizhe, CAI Shengxia, ZOU Guohui,et al. Development strategy research of smart grid adapting to new era economic and social development[J].Distributed Energy, 2018, 3(1): 21-27.(0)

[6]尹忠东, 王超. 分布式风电接入交直流混合配电网的研究[J]. 电力建设, 2016, 37(5): 63-68.

YIN Zhongdong, WANG Chao. AC/DC hybrid distribution network with distributed wind farm[J].Electric Power Construction, 2016, 37(5): 63-68.(1)

[7]冯庆东. 能源互联网与智慧能源[M]. 北京: 机械工业出版社, 2015(1)

[8]周晓薇, 谈金晶, 陈昕儒. 能源互联网下的需求响应研究[J]. 电工电气, 2018(4): 65-68.

ZHOU Xiaowei, TAN Jinjing, CHEN Xinru. Research on demand response under energy internet[J].Electrotechnics Electric, 2018(4): 65-68.(1)

[9]殷爽睿, 艾芊, 曾顺奇, 等. 能源互联网多能分布式优化研究挑战与展望[J]. 电网技术, 2018, 42(8): 1359-1369.

YIN Shuangrui, AI Qian, ZENG Shunqi,et al. Challenges and prospects of multi-energy distributed optimization for energy internet[J].Power System Technology, 2018, 42(8): 1359-1369.(0)

[10]钟迪, 李启明, 周贤, 等. 多能互补能源综合利用关键技术研究现状及发展趋势[J]. 热力发电, 2018, 47(2): 1-5.

ZHONG Di, LI Qiming, ZHOU Xian,et al. Research status and development trends for key technologies of multi-energy complementary comprehensive utilization system[J].Thermal Power Generation, 2018, 47(2): 1-5.(1)

[11]直流配电电压: T/CEC 107—2016[S](5)

[12]中低压直流配电电压导则: GB/T 35727—2017[S](1)

[13]盛万兴, 李蕊, 李跃, 等. 直流配电电压等级序列与典型网络架构初探[J]. 中国电机工程学报, 2016, 36(13): 3391-3403.

SHENG Wanxing, LI Rui, LI Yue,et al. A preliminary study on voltage level sequence and typical network architecture of direct current distribution network[J].Proceedings of the CSEE, 2016, 36(13): 3391-3403.(2)

[14]宋强, 赵彪, 刘文华, 等. 智能直流配电网研究综述[J]. 中国电机工程学报, 2013, 33(25): 9-19.

SONG Qiang, ZHAO Biao, LIU Wenhua,et al. An overview of research on smart DC distribution power network[J].Proceedings of the CSEE, 2013, 33(25): 9-19.(1)

[15]刘树, 赵宇明, 陈莉, 等. 柔性直流配电网控制保护系统设计与策略研究[J]. 供用电, 2018(1): 21-27.

LIU Shu, ZHAO Yuming, CHEN Li,et al. Research on control and protection strategy and design scheme of VSC-DC distribution network control and protection system[J].Distribution and Utilization, 2018(1): 21-27.(0)

[16]王成山, 李鹏, 于浩. 智能配电网的新形态及其灵活性特征分析与应用[J]. 电力系统自动化, 2018, 42(6): 1-9.

WANG Chengshan, LI Peng, YU Hao. Development and acteristic analysis of flexibility in smart distribution network[J]. Automation of Electric Power Systems, 2018, 42(6): 1-9.DOI:10.7500/AEPS20170617001(0)

[17]肖湘宁, 廖坤玉, 唐松浩, 等. 配电网电力电子化的发展和超高次谐波新问题[J]. 电工技术学报, 2018, 33(4): 707-719.

XIAO Xiangning, LIAO Kunyu, TANG Songhao,et al. Development of power-electronized distribution grids and the new supraharmonics issues[J].Transactions of China Electrotechnical Society, 2018, 33(4): 707-719.(0)

[18]

马钊, 安婷, 尚宇炜. 国内外配电前沿技术动态及发展[J]. 中国电机工程学报, 2016, 36(6): 1552-1567.

MA Zhao, AN Ting, SHANG Yuwei. State of the art and development trends of power distribution technologies[J].Proceedings of the CSEE, 2016, 36(6): 1552-1567.(1)

[19]EMANUEL A, MCEACHERN A. Electric power definitions: a debate[C]//The IEEE Power & Energy Society (PES) General Meeting. Vancouver, BC, Canada, 2013: 21-25(1)

[20]傅守强, 高杨, 陈翔宇, 等. 基于柔性变电站的交直流配电网技术研究与工程实践[J]. 电力建设, 2018, 39(5): 46-55.

FU Shouqiang, GAO Yang, CHEN Xiangyu,et al. Research and project practice on AC and DC distribution network based on flexible substations[J].Electric Power Construction, 2018, 39(5): 46-55.(0)

[21]HUANG A Q, CROW M L, HEYDT G T,et al. The future renewable electric energy delivery and management(FREEDM) system: the energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148.DOI:10.1109/JPROC.2010.2081330(0)

[22]KAKIGANO H, MIURA Y, ISE T. Low-voltage bipolar-type DC microgrid for super high quality distribution[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3066-3075.DOI:10.1109/TPEL.2010.2077682(0)

[23]WICKERT M, BAIER A, LICHTNER P, et al. Benefit of a simulation model of a decentralized energy management system for electric vehicle ging[C]// 2010 Emobility-Electrical Power Train. Leipzig, 2010: 1-7(1)

[24]KRENGE J, SCHEIBMAYER M, DEINDL M. Identification scheme and name service in the Internet of Energy[C]//2013 IEEE PES Innovative Smart Grid Technology(ISGT). Washington, 2013:1-6(1)

[25]王一振, 赵彪, 袁志昌, 等. 柔性直流技术在能源互联网中的应用探讨[J]. 中国电机工程学报, 2015, 35(14): 3551-3560.

WANG Yizhen, ZHAO Biao, YUAN Zhichang,et al. Study of the application of VSC-based DC technology in energy internet[J].Proceedings of the CSEE, 2015, 35(14): 3551-3560.(1)

[26]刘国旗. 从变压器负载率与能耗统计看变压器的经济运行点[J]. 电工技术, 2010(2): 12.

LIU Guoqi. Evaluation of transformer economical operation point from transformer load rate and energy consumption statistics[J].Electric Engineering, 2010(2): 12.(1)

[27]姜世公, 吴志力, 李红军, 等. 直流配电电压等级及负荷距分析[J]. 电力建设, 2017, 38(6): 59-65.

JIANG Shigong, WU Zhili, LI Hongjun,et al. Analysis of the voltage stage and load distance for DC distribution network[J].Electric Power Construction, 2017, 38(6): 59-65.(1)

[28]段建东, 魏朝阳, 周一, 等. 未来直流配电网电压等级序列研究[J]. 中国电机工程学报, 2018, 38(12): 3538-3545.

DUAN Jiandong, WEI Zhaoyang, ZHOU Yi,et al. Research on voltage level sequence of future DC distribution network[J].Proceedings of the CSEE, 2018, 38(12): 3538-3545.(1)

[29]尹忠东, 冯寅, 闫凤琴, 等. 交直流混合配电网能效综合评价方法[J]. 电力建设, 2016, 37(5): 100-108.

YIN Zhongdong, FENG Yan, YAN Fengqin,et al. Energy efficiency comprehensive evaluation method for AC/DC hybrid distribution network[J].Electric Power Construction, 2016, 37(5): 100-108.(0)

[30]张爱萍, 陆振纲, 宋洁莹, 等. 应用于交直流配电网的电力电子变压器[J]. 电力建设, 2017, 38(6): 66-72.

ZHANG Aiping, LU Zhengang, SONG Jieying,et al. Power electronic transformer used in AC/DC hybrid distribution network[J].Electric Power Construction, 2017, 38(6): 66-72.(0)

[31]SHI J J. Research on voltage and power balance control for cascaded modular solid-state transformer[J].IEEE Transactions on Power Electronics, 2011, 24(4): 1154-1166.(0)

[32]刘许亮, 朱焕立. 交直流配电网中VSC无模型自适应控制器[J]. 中国电力, 2016, 49(9): 46-50.

LIU Xuliang, ZHU Huanli. VSC model-free adaptive controller in AC and DC distribution network[J]. Electric Power, 2016, 49(9): 46-50.DOI:10.11930/j.issn.1004-9649.2016.09.046.05(1)

[33]丁骁, 汤广福, 韩民晓, 等. IGBT串联阀混合式高压直流断路器分断应力分析[J]. 中国电机工程学报, 2018, 38(6): 1846-1856.

DING Xiao, TANG Guangfu, HAN Minxiao,et al. Analysis of the turn-off stress on hybrid DC circuit breaker with IGBT series valve[J].Proceedings of the CSEE, 2018, 38(6): 1846-1856.(1)

[34]丁骁, 汤广福, 韩民晓, 等. 混合式高压直流断路器型式试验及其等效性评价[J]. 电网技术, 2018, 42(1): 72-78.

DING Xiao, TANG Guangfu, HAN Minxiao,et al. Design and equivalence evaluation of type test for hybrid DC circuit breaker[J].Power System Technology, 2018, 42(1): 72-78.(0)

[35]AITHAL A, WU Jianzhong. Operation and performance of a medium voltage DC voltage DC link[C]//24th International Conference on Electricity Distribution, Glasgow, Scotland, 2017: 1-5(1)

[36]周诗嘉, 林卫星, 姚良忠, 等. 两电平VSC与MMC通用型平均值仿真模型[J]. 电力系统自动化, 2015, 39(12): 138-145.

ZHOU Shijia, LIN Weixing, YAO Liangzhong,et al. Generic averaged value models for two-level VSC and MMC[J]. Automation and Electric Power Systems, 2015, 39(12): 138-145.DOI:10.7500/AEPS20140615001(1)

[37]NAMI A, LIANG Jiaqi, DIJKHUIZEN F,et al. Modular multilevel converters for HVDC applications: review on converter cells and functionalities[J]. IEEE Transactions on Power Electronics, 2014, 30(1): 18-36.(0)

[38]戴志辉, 葛红波, 严思齐, 等. 柔性直流配电网接地方式对故障特性的影响分析[J]. 电网技术, 2017, 41(7): 2353-2362.

DAI Zhihui, GE Hongbo, YAN Siqi,et al. Effects of grounding mode on fault acteristics in flexible DC distribution system[J].Power System Technology, 2017, 41(7): 2353-2362.(0)

[39]TANG Lianxiang, BOON-TECK O. Locating and isolating DC faults in multi-terminal DC system[J]. IEEE Transaction on Power Delivery, 2007, 22(3): 1877-1884.DOI:10.1109/TPWRD.2007.899276(1)

[40]李斌, 何佳伟. 柔性直流配电系统故障分析及限流方法[J]. 中国电机工程学报, 2015, 35(12): 3026-3036.

LI Bin, HE Jiawei. DC fault analysis and current limiting technique for VSC-based DC distribution system[J].Proceedings of the CSEE, 2015, 35(12): 3026-3036.(1)

[41]ABDULLAH A, EMHEMED S, Graeme M. An advanced protection scheme for enabling an LVDC last mile distribution network[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2602-2609.DOI:10.1109/TSG.2014.2335111(0)

[42]胡辉勇, 王晓明, 于淼, 等. 主从控制下直流微电网稳定性分析及有源阻尼控制方法[J]. 电网技术, 2017, 41(8): 2664-2671.

HU Huiyong, WANG Xiaoming, YU Miao,et al. Stability analysis and active damping control for master-slave controlled DC microgrid[J].Power System Technology, 2017, 41(8): 2664-2671.(1)

[43]HAILESELASSIE T M, UHLEN K. Impact of DC line voltage s on power flow of MTDC using droop control[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1441-1449.DOI:10.1109/TPWRS.2012.2186988(1)

[44]PRIETO-ARAUJO E, BIANCHI F D, JUNYENT-FERRE A,et al. Methodology for droop control dynamic analysis of multiterminal VSC-HVDC grids for offshore wind farms[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2476-2485.DOI:10.1109/TPWRD.2011.2144625(0)

[45]彭亮, 咸日常, 张新慧, 等. 多端互联交直流配电网的潮流分层控制策略及算法[J]. 电力系统自动化, 2016, 40(14): 72-77.

PENG Liang, XIAN Richang, ZHANG Xinhui,et al. Hierarchical power flow control strategy and algorithm for multi-terminal interconnected AC/DC distribution network[J]. Automation of Electric Power Systems, 2016, 40(14): 72-77.DOI:10.7500/AEPS20151119004(0)

[46]季一润, 袁志昌, 孙谦浩, 等. 柔性直流配电网典型运行方式及切换方法[J]. 南方电网技术, 2016, 10(4): 8-15.

JI Yirun, YUAN Zhichang, SUN Qianhao,et al. Typical operation mode and switching method of VSC-DC distribution network[J].Southern Power System Technology, 2016, 10(4): 8-15.(0)

[47]黄健昂, 魏承志, 文安. 计及源荷不确定性的柔性直流配电网分层协调控制策略[J]. 电力系统自动化, 2018, 42(6): 106-113.

HUANG Jianang, WEI Chengzhi, WEN An. Hierarchical coordinated control strategy for flexible DC distribution network considering uncertainties of source and load[J]. Automation of Electric Power Systems, 2018, 42(6): 106-113.DOI:10.7500/AEPS20170614011(1)

[48]CAO J, DU W, WANG H F. Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks[J]. IEEE Transaction on Power Systems, 2013, 28(3): 3047-3055.DOI:10.1109/TPWRS.2013.2241086(0)

[49]BEERTEN J, COLE S, BELMANS R. Generalized steady-state VSC-MTDC model for sequential AC/DC power flow algorithms[J]. IEEE Transaction on Power Systems, 2012, 27(2): 821-829.DOI:10.1109/TPWRS.2011.2177867(0)


投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

配电系统查看更多>配电技术查看更多>能源互联网查看更多>