北极星

搜索历史清空

  • 水处理
您的位置:电力输配电电网建设评论正文

实例分析:区域能源互联网规划优化及商业思路

2018-07-19 09:04来源:《全球能源互联网》杂志关键词:能源互联网都你能赢系统智慧能源收藏点赞

投稿

我要投稿

摘要:以智慧能源与互联网技术相结合为特征的能源互联网已成为国家“十三五”能源领域的重大战略性新兴产业。多能源系统是实现能源互联网规划建设的物理基础。文中首先介绍了能源互联网的三层架构与多能源系统的基本概念,在此基础上从能源互联网价值实现的角度阐述了能源互联网的规划优化及商业模式构建的思路。最后,以山西太原区域能源互联网的规划建设为实例,对太原区域能源互联网的建设背景、潜在价值、关键问题和难点几个方面进行了总结和展望。

关键词 : 能源互联网;多能源系统;协同规划;商业模式;综合需求响应

基金项目:国家自然科学基金重点国际(地区)合作与交流项目(51620105007);山西电网公司科技项目“太原区域能源互联网关键技术(运营模式)研究与示范应用”。

0 引言

互联网已成为人类发展获取信息的主要基础设施,基于互联网的创新层出不穷,李克强总理在2015年工作总体部署中提出“互联网+”,并期待基于互联网我国能创造出更多的新技术、新模式[1]。作为支撑人类文明发展的另一种基础元素—能源,其发展相对于互联网而言,在灵活性、开放性、可扩展性等方面都制约了相关创新活动的开展,转变能源结构、提高能源效率、创新能源消费等都是能源领域改革面临的巨大挑战。以可再生能源与互联网技术结合为手段的能源互联网的建设成为国家“十三五”能源领域战略性新兴产业智能电网方向的重大工程[2]。

能源互联网是以互联网思维与理念构建的新型信息—能源融合“广域网”,它以大电网为“主干网”,以微网、分布式能源等能量自治单元为“局域网”,以开放的信息—能源一体化架构最大限度地适应分布式可再生能源的接入,真正实现自底向上的能量对等分享[3]。在关键技术突破方面,能源互联网对现有能源技术提出了更高要求,并提供了能量路由器、储能、分布式发电、柔性交/直流输电技术、电力电子技术、区块链技术[4]等关键技术进一步发展的综合应用平台。在社会影响方面,能源互联网将推动能源供给体系的变革,推动能源技术革命,促进电力体制改革,支撑社会生产模式转型,创新商业模式、创造就业机会,促进产业升级、形成新增长点。

能源互联网在纵向可以划分为三层,从低层至顶层依次为物理层、信息层和商业模式层,如图1所示。能源互联网通过信息能量深度耦合以及多能源系统的广泛集成,能够实现电能、冷、热能的高效生产、灵活控制以及智能利用,促进可再生能源的大幅接入,实现开放、灵活互动的电能交易形式,能够深入挖掘用户需求响应潜力,最终整体提高终端能源的使用效率,降低能源生产成本,减少全社会碳排放量[5]。从能源互联网运营商的角度而言,通过灵活控制区内能量生产环节、降低传输环节能耗、增强能源供应可靠性,利用价格信号充分协调不同时间、空间以及能源形式的使用,大幅度提高终端能源生产与利用效率,从而创造额外的商业价值;对用户而言,能够通过合理安排能源利用,降低能源使用费用,进而降低生产成本;从能源互联网投资商的角度,通过投资能源互联网中新能源发电、冷热电联供、先进信息以及控制技术,降低了多能源系统的运营成本,实现了充分的收资回报。

我国已经开始启动城市级/园区级能源互联网的建设。为落实《关于推进“互联网+”智慧能源发展的指导意见》(发改能源〔2016〕392号)[6]、《国家能源局关于组织实施“互联网+”智慧能源(能源互联网)示范项目的通知》(国能科技〔2016〕200号)[7]等有关要求,国家能源局在2017年6月底公布了首批55个“互联网+”智慧能源(能源互联网)示范项目[8],其中城市能源互联网综合示范项目12个、园区能源互联网综合示范项目12个、其他及跨地区多能协同示范项目5个。多能源系统的优化规划是这些示范工程面临的首要问题。

集成电、气、热、冷等不同形式能源的多能源系统是能源互联网的物理基础。多能源系统的统一规划能够有效地考虑各个能源系统之间的互补和耦合关系,弥补原来各个能源系统分开单独规划的不足。然而目前,我国的电力、热力、燃气等能源系统均处于各自分立管理、单独规划的状态。另外,随着热电联产、电热泵、吸收式制冷机等分布式能源技术的发展,不同形式的能源在生产、传输、消费等各个环节的耦合关系越来越复杂、耦合作用越来越强,这也在客观上迫使业界对多能源系统展开研究[9-11]。

1 能源互联网的物理基础—多能源系统

广义的多能源系统(Multiple Energy Systems,MES)是指煤炭、天然气、石油、核能、水能、风能、太阳能等多种形式能源的开发、转换、储备、运输、调度、控制、管理、使用等环节所组成的大系统。多能源系统将所有一次能源通过多个环节的转化与传输,最终以电、热/冷、燃料等形式为人类生产与生活提供动力[12]。图2给出的是一个典型的面向可再生能源消纳的多能源系统能量流动示意图。

电力、热力、燃气等多能源系统进行融合与协同优化,充分考虑各能源系统的互补特性,对于提升能源利用效率,降低能源开发与利用对环境的影响,促进可再生能源消纳具有重要意义。在多种能源形式中,电能是应用最广泛的能源形式,电力系统是智能化程度最高的能源系统,同时承担着利用水能、风能以及太阳能的任务。为此,以电力为核心,以能源高效清洁利用为目标,以大规模可再生能源并网消纳为背景,研究电力系统、热力系统以及天然气系统组成的多能源系统的集成与协调优化是目前的研究热点。国际上将该问题称为“能源系统集成”(Energy Systems Integration,ESI),是应对能源高效清洁利用的有效途径。

美国国家能源部于2001年提出了能源集成系统(Integrated Energy System,IES)研究计划,其目标在于保证能源系统运行可靠性的前提下,提高可再生能源在能源系统中的占比,并促进热电联产技术等多能源集成技术的应用与推广[13]。德国政府于2010发布了《德国能源构想草案》(Draft German Energy Concept),着重突出了各能源系统之间协调运行的机制设计与技术实现,并于2011年启动了能源研究方案的制定与实施工作,其中广泛涉及新能源发电、储能等多能源系统集成关键技术的研究。丹麦政府大力支持分布式可再生能源的发展,利用生物质能进行热电联产和集中供热,致力于高比例可再生能源的消纳,并试图通过电网、热网、气网和交通网的协调规划和运行,设计相应能源市场机制,充分调动需求侧响应资源,力争在2050年之前实现新能源占比100%[14]。国际上的专家学者在2014年成立了能源系统集成国际联合研究会(The International Institute for Energy Systems Integration,IIESI),目的是为了解决能源系统的协调与优化问题。IIESI目前已经分别在美国、丹麦以及日本召开了三次国际性会议,在国际上迅速发展。

瑞士于2003年启动的“未来能源网络愿景(Vision of Future Energy Networks)”研究项目中首次提出了能量枢纽(energy hub,EH)的概念[15]。能量枢纽的概念将一个多能源系统抽象成为一个输入—输出双端口网络,认为一个多能源系统内部电、气、热、冷等能源之间的耦合关系从系统外部来看,都是输入的各种形式的能源,最终转换为其他形式的能源,以满足系统输出端的负荷需求。能量枢纽的输入和输出通过一个耦合矩阵建立联系。能量枢纽建模方法具有高度的抽象性,无论多能源系统的规模大小,都能通过能量枢纽这一模型工具进行规范化地描述[16-17]。国内外学者对于能量枢纽在多能源系统规划、运行中的应用也已经开展了详细的研究[18-19]。

2 从价值实现的角度看能源互联网规划

能源互联网的规划就是回答能源互联网价值来自哪里、怎样实现、怎样分配的问题。能源互联网价值源于多能源系统的集成、耦合与互补,最大化多能源系统之间的集成效益是能源互联网规划的目标;能源互联网的价值实现要基于具体的规划方法与方案;要实现能源互联网创造价值的合理分配,则需要合理的商业模式设计。

2.1 能源互联网的价值来源—多能源系统集成

能源互联网的价值来源于多能源系统的集成,包括电力与天然气系统集成、电力与热力系统集成等。

现阶段中国燃气机组在电力系统中所占比重较小,传统的电力系统协调运行往往不考虑天然气网络的运行工况。而实际上,天然气的输送及供应能力会对电力系统中燃气机组的运行产生影响,如果燃气机组同时承担热力负荷,那么气网的运行状况还会对热力系统产生影响。因此,在能源系统集成时,需建立精细化气网模型,将燃气的供应能力及天然气管网的运行状况考虑进去。C.Unsihuay与J.W.Marangon[20]建立了天然气和电力系统的联合优化运行模型,模型中考虑了压气机与储气设施的影响,采用进化策略算法并结合内点法进行求解。伊利诺伊理工大学的M.Eremia[21]将天然气管网约束加入到机组组合模型中,综合考虑了燃气合同以及燃气管道输送能力等限制条件。

电力系统与热力系统的集成,除需保证电力系统自身的安全运行以外,还需满足热力系统的相关约束,需要建立热力系统的运行模型。热力系统是一个多输入多输出系统,其能量传输过程具有明显的延时与损耗,同时,其水力过程与热力过程相互耦合,使得整个系统较为复杂。目前国内外还有许多关于电热协调运行的研究,分析如何打破“以热定电”原则,促使热电联产机组灵活运行。龙虹毓等人[22]基于采暖热水负荷和电力负荷等约束,建立了对热电联产机组和风力发电机组节能优化调度的数学模型,并基于我国现行电价和供暖热价,讨论了风电供暖的上网电价问题。Nuytten等人[23]分析了加装储热环节对热电联产系统的作用,同时比较了集中式储热与分布式储热这两种情况下的效益问题。Lund等人[24]针对丹麦的风电消纳问题提出了两种策略,一种是开拓欧洲市场,将剩余风电售到周边国家,另一种是将热电联产机组与电制热装置和储热装置结合起来,实现电热解耦,增强热电机组的调峰能力,并着重分析了第二种策略的经济效益。总体而言,国内的相关学者更多的着眼于如何在热电联产机组电热耦合约束的条件下,通过合理的电、热负荷分配,充分挖掘热电联产机组的新能源消纳潜力;而国外学者则致力于通过电锅炉、集中储热环节等装置拓展热电联产机组的运行边界,实现电热解耦,以扩展新能源的消纳空间。

2.2 能源互联网的价值实现方式—多能源系统协同规划

多能源系统规划是能源互联网价值实现的保证,只有在规划层面协同多个能源系统,充分考虑不同能源形式之间的互补和耦合,建成的能源互联网工程才具有经济性上的优势。多能源系统规划从空间范围上可以分为区域多能源系统规划和跨区多能源系统规划两个大类。

区域级多能源系统主要指园区、城市范围内各种形式能源的生产、转换、分配和存储系统,包括分布式电源、配电系统、燃气调压柜、换热站和燃气、热水管道等。G. Andersson等人[25]提出了一种混合整数非线性规划(mixed-integer nonlinear programming,MINLP)方法,对一个含有若干备选型号的热电联产机组(combine heat and power,CHP)、变压器和燃气锅炉的能量枢纽进行规划。A.Sheikhi等人[26]提出了一种非线性的规划方法,为德黑兰的一座旅店优化CHP、燃气锅炉、吸收式制冷机和储热装置的容量和运行模式。Hongbo Ren等人[27]提出了一种规划方法,实现了日本一幢含有CHP、储能装置和辅助锅炉的居民楼的年化费用的最小化。P. Arcuri等人[28]阐述了一种冷热电三联产系统的设计流程,设计了一座医院中的CHP和电热泵(electric heat pump,EHP)的容量。Ryozo Ooka等人[29]提出了一种基于遗传算法的方法,为每种楼宇多能源系统结构选择最优的设备容量和运行方案。Pierluigi Mancarella等人[30]在考虑了不同的运行策略的情况下对不同的冷热电三联产系统结构进行运行模拟,以此挑选最优的系统结构。

跨区多能源系统往往涉及到能够远距离传输的输电网络与天然气网络,与区域多能源系统的规划不同,跨区多能源系统规划需要考虑若干区域多能源系统之间的网络连接关系。Xiaping Zhang等人[31]以降低系统建设、运行总成本和提升系统可靠性为优化目标,引入能源综合利用效率、碳排放量等评价指标,对系统中的传统发电机组、输电线路、燃气炉和热电联产机组同时进行规划,并对各能源系统分开单独规划、多能源系统统一规划、热电联产机组容量事先固定等多种情形进行对比分析,结果表明多能源系统统一规划有利于降低系统建设、运行总成本和提高系统可靠性。Qiu等人[32]提出一种电气互联系统的联合规划方案,以降低其总的投资和运维成本,并对目标函数和约束条件中的非线性项进行了线性化,通过迭代求解实现两个互联系统的总体最优规划。

原标题:构建区域能源互联网:理念与实践
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

能源互联网查看更多>都你能赢系统查看更多>智慧能源查看更多>