北极星

搜索历史清空

  • 水处理
您的位置:电力输配电配电自动化技术正文

直流配电网故障分析和继电保护综述

2018-06-12 09:04来源:供用电杂志作者:罗飞 焦在滨等关键词:直流配电网继电保护断路器收藏点赞

投稿

我要投稿

2 直流配电网故障检测与定位原理

直流配电网故障检测和定位是直流配电网继电保护的核心。目前直流配电网故障检测与定位方法大多都参考交流系统继电保护方法,保护原理涉及电压/电流保护、距离保护、纵联电流差动保护等多种保护原理。但相较于交流系统,直流配电网保护又具有其特殊性,表现为:①直流配电网对保护的动作速度要求极高;②“直流成网”的直流配电网对保护的选择性要求很高;③直流配电网保护原理可以充分利用直流系统的边界元件。下面将对目前国内外学者对直流配电网继电保护方面的研究进行详细的综述。

2.1 电压/电流保护

电压/电流保护是电力系统最基础的保护原理,它一般利用电流幅值的增大、电压幅值的减小或者电压、电流变化率的变化来判断故障区间。

文献[20]针对含分布式电源的辐射状直流配电网提出了基于电流瞬时值的两段式过电流保护策略。利用电压突变作为保护启动判据,过电流保护段是快速保护段,其能够在故障电流的上升阶段发送跳闸指令;过电流保护Ⅱ段作为过电流保护段的后备保护,用于在电容放电阶段结束后,故障电流达到稳态时进行保护,该方案不足之处在于没有充分考虑系统运行方式的影响,其保护整定值的选取缺乏可靠的依据。文献[21]同样针对辐射状直流配电网设计了一套过电流及电流变化率保护方案。文章中将故障分为近端故障和远端故障,为了兼顾速动性和选择性,文章参考交流系统阶段式保护的思想,设置了两段式的过电流保护及电流变化率保护,与文献[20]不同的是本文中的两段式保护均作为被保护线路的主保护。具体地,近端故障时电流速断保护及近端电流变化率,发出跳闸指令;远端故障时,限时电流速断保护及远端故障电流变化率保护动作,切除故障线路,两段式保护通过整定值和延时的相互配合可以实现故障线路的切除,但其缺点也很明显,动作速度较慢,不能满足未来直流配电网保护动作速度的要求。

综上,电压/电流保护虽然原理简单,实现方便,但其动作速度和选择性难以满足直流配电网要求,尤其是多端柔性直流配电系统,因此电压/电流保护在直流配电网的保护中一般只用于故障检测。

2.2 边界保护

边界保护是直流电网保护所特有的保护原理,该保护原理主要利用线路边界元件两侧故障暂态特征的差异判别故障区间。目前关于边界保护的研究多在柔性高压直流输电领域展开,但其保护原理在柔性直流配电领域仍然具有适用性。因此下面关于边界保护的综述中并不局限于直流配电网领域。

文献[14]对三端网状柔性直流电网的保护原理进行研究,提出了一套仅利用单端直流电抗器电压的大小和方向的变化特征识别故障的保护原理,该保护原理可以实现故障线路、故障类型以及故障极的判别,大量仿真验证结果表明该方案能够灵敏、可靠、快速地识别故障线路和故障极,且能够耐受一定的过渡电阻,适合用作多端柔性直流系统的主保护。文献[22]利用事先设定好的直流电抗器两端电压阈值5 kV和10 kV以及电压从5 kV上升到10 kV所需要的时间来进行故障线路的识别。该保护方案实现过程中首先通过比较同一换流站不同馈出线路中的直流电抗器两端电压的极性,判断可能发生故障的直流线路,再选取该条线路上的直流电抗器电压作为研究对象,进行故障区间的判别。

文献[23-24]利用直流电抗器两端电压变化率的特征,设计了适用于直流电网保护的保护原理。其中文献[23]针对交流阀侧含有接地点的直流系统,设计了一套利用直流电抗器线路侧电压变化率作为保护判据的保护原理。文中具体讨论了直流电抗器的取值与直流断路器耐受过流能力以及故障开断时间的关系。另外,线路侧电压变化率的整定值的选取原则也是文章关注的重点内容。文献[24]利用低电压作为保护启动判据;利用直流电抗器电压变化率大小和极性判断故障区间;利用零模故障分量的大小确定故障极,设计了一套满足柔性直流电网要求的保护原理。

文献[25]利用直流电抗器对故障过程中高频电流信号的阻隔作用,提出了利用短路电流的高频暂态能量的差别区分区内外故障的保护原理。具体地,利用小波变换提取故障过程中短路电流的高频暂态能量,根据暂态能量的差别识别区内外故障,同时,利用直流电抗器上的压降作为方向元件,判断故障方向,防止保护反向误动。该保护原理的优点在于动作速度快,能够耐受一定的过渡电阻,不足之处在于针对不同故障类型的保护整定值不统一且保护整定值需要通过仿真获取。文献[26]针对两电平VSC换流器构成的直流系统,利用直流电抗器和直流侧储能电容作为线路边界元件,通过比较线路侧与母线侧暂态电压的比值确定故障线路。

边界保护虽然在速动性、选择性上满足柔性直流配电网的要求,但其实现需要直流线路两端都装设有直流电抗器作为前提。实现该前提,存在两大难点:一方面并非所有直流配电网都支持安装直流电抗器;另一方面,直流电抗器的取值目前还没有较为完善的理论体系,不同直流电抗器的取值会对边界保护的整定值的选取产生极大的影响。因此,边界保护原理能否适应未来直流配电网的发展,还需要进一步的研究验证。

2.3 纵联保护

纵联保护是基于双端电气量的保护原理,它一般利用线路两端的差动电流、差动电流的能量或者线路两端电流的方向的特征识别故障线路,主要包括纵联电流差动保护、纵联电流方向保护。

文献[27-28]提出了利用电流差动保护原理实现直流配电网故障线路识别的方法。其中文献[27]沿线多点布置电流光纤传感器,通过对比相邻传感器上的差动电流的大小以及电流变化率的差异判断故障区间,该方法的缺点在于成本较高。文献[28]以电压不平衡度作为单极接地故障的保护启动判据,再通过电流差动保护进行故障定位,以过流和欠压保护作为极间短路故障的保护启动判据,再通过电流差动保护进行故障定位。

文献[29]提出了一种基于线路直流电抗器两侧电压暂态分量幅值比的快速方向纵联保护判据,利用小波变化提取电压暂态分量中的有效信息,同时通过正负极电压的幅值比进行故障极的判别,该方法优点在于不受线路分布电容的影响,能够在3~4 ms内快速动作,满足柔性直流配电网对保护动作速度的要求。文献[30]针对“手拉手”式的两端直流配电网,设计了一套基于电流状态矩阵的保护原理,实际上就是利用线路两端电流方向信息进行故障线路的判别,该保护判据同时具备故障类型的判别能力。文献[31]针对小电流接地方式下的对称单极直流系统单极接地故障时,故障电流小甚至无故障电流的特点,利用故障暂态过程中,线路分布电容提供的微弱故障电流的特性,提出利用线路两端暂态差流的短时能量来区分区内外故障。

纵联保护利用双端电气量信息判别故障,可靠性高,但其需要解决通信和数据同步问题。实际应用中其动作速度和可靠性能否满足直流配电网的要求还有待进一步的验证。

2.4 其他保护

除了电压/电流保护、边界保护、纵联保护等常见的直流配电网保护原理外,国内外学者针对直流配电网还提出了分区保护、横联保护、测距式保护、握手法、基于智能算法的保护等保护原理。

其中文献[32]根据直流系统规模及保护要求,提出了多端直流系统区域保护划分原则和分区保护策略,通过划分区域减少直流断路器的数量,该方法利用直流断路器隔离故障区域与非故障区域,非故障区域维持运行,故障区域通过交流侧断路器和直流侧隔离开关进行故障隔离。

文献[34]为了减小电流互感器的投资,提出了针对辐射状网络的横联保护方案,该方法仅利用线路首端正负极装设的电流互感器测得的电流数据便可以进行故障区段的判别;缺点在于用于保护的电流数据是故障后的稳态量,保护动作速度不能满足直流配电网的要求。

文献[35]针对两端供电的直流配电网提出了一套测距式保护方案。对传统的R-L算法进行改进,利用直流电抗器上的压降代替了传统的差分方法获取dd,从而避免了差分代替微分带来的误差,提高了R-L算法的数值稳定性。

文献[36-37]利用握手法原则,先根据方向性过电流保护选取预跳闸开关,然后再根据线路的带电信息进行重合闸。该方法简单可靠,但依靠交流侧断路器切除故障,动作速度慢,供电可靠性差。

文献[38]分析了单纯利用时域或者频域方法在识别直流系统故障方面存在的问题,指出随着模糊算法、神经网络和人工神经网络等智能算法的发展,可以考虑将人工智能算法融入到直流电网的保护中。

综上所述,目前关于直流配电网保护的研究尚处在探索阶段,还没有任何一种保护方案能够完全满足直流配电网保护的要求。充分考虑未来直流配电系统“直流成网”的结构特点,寻找适合直流配电网保护的新型、快速、可靠的保护方案仍然是未来直流配电网领域一个非常重要的研究方向。

原标题:特别策划 |罗飞,焦在滨,马钊等: 直流配电网故障分析和继电保护综述
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

直流配电网查看更多>继电保护查看更多>断路器查看更多>