北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池技术正文

未来电池储能电站应用前景和集成应用模式展望

2017-11-08 10:07来源:电网技术作者:李相俊 王上行 惠东关键词:电池储能电池储能系统电池储能电站收藏点赞

投稿

我要投稿

4.3 储能系统在主动配电网中的应用

主动配电网是实现大规模间歇式新能源并网运行控制、电网与充放电设施互动、智能配用电等电网分析与运行关键技术的有效解决方案,电池储能系统因其能量传输效率高,配置灵活等优点是实现主动配电网的重要技术基础,对提高分布式能源的利用效率和配电网运行经济性意义重大[63-64]。

如何将各种经济性因素考虑进主动配电网运行的优化过程中是目前该领域的研究热点。文献[65]以可再生能源利用率最大、网络损耗最小和用户满意度最高为目标构建了主动配电网优化调度模型,提出了储能和柔性负荷的协调优化方案。文献[66]考虑分时电价和售购电价差异,以实现分布式电源波动功率的消纳,最小化配电网向主网的购电成本为目标,提出了一种主动配电网中电池储能系统(BESS)的运行优化模型,在此过程中通过计算BESS中电池循环寿命,计及BESS的等效运行成本,实现了BESS的经济运行。文献[67]则考虑了线路改造和新建、储能及分布式电源的选址定容、典型日下分布式发电和储能的经济调度、承担分布式发电/储能建设投资的区域能源供应商的营收状况等因素,提出了一种主动配电网规划-运行联合优化模型,实现了主动配电网的经济运行。上述文献均考虑了与经济性相关的线损、用电成本等若干指标,在现场应用中需结合主动配电网实际需求遴选相应指标构建优化模型。

储能系统在主动配电网构建中作用巨大,如何将网络重构、可控分布式电源、需求侧响应等更多主动配电网中可调度资源考虑在储能优化控制与调度模型之中,是未来该方向的研究重点之一。

4.4 V2G(Vehicle-to-Grid)技术的应用

随着电动汽车产业的快速发展,电动汽车在配电网中的充放电容量以及充放电过程对配电网安全运行的影响已不容小觑[68-70],如何通过智能配电网及智能交通技术对电动汽车充放电过程进行科学有序管理,发挥电动汽车储能载体的作用对配电网能量进行优化管理,是未来配电网的重要研究方向之一。

文献[71-72]指出,未来电动汽车(electric vehicle,EV)的大规模接入,将给电力系统规划和运行带来不可忽视的影响,电动汽车与电网互动可以实现削峰填谷、参与调频、提供备用等作用,对于电网的安全经济运行和提高新能源发电消纳能力具有重要意义。文献[73-74]综合考虑电网约束、电池约束、车主使用需求,提出了电动汽车分布式储能的控制策略,使得电动汽车实现了与电网的信息双向交换和与能量双相交换。

随着电动汽车产业的发展,V2G技术将具有广阔的应用前景,然而该领域研究工作尚停留在理论框架构建和应用模式探索阶段,缺乏较为成熟的技术路线和实现方法,急需对其展开持续深入的研究。

4.5 移动式储能装置的并网应用

依据不同并离网接入需求,移动式电池储能装置可在配电网中灵活配置和应用,而研究适用于不同电压等级和应用模式的系统集成与接口配置技术是关键问题之一,以确保其高效、灵活、可靠运行。文献[75]考虑季节性用电负荷对配电网末端电能质量影响,提出了一种移动式电池储能车的系统集成与接入、控制应用方法,分析论证了其在福建某茶区的实际应用效果,相关技术成果为移动式电池储能装置在配电网灵活应用提供了一种有益借鉴。文献[76]考虑配电网中低压三相线路覆冰灾害时的融冰需求,以移动式电池储能系统主要设备的总成本最小为目标,提出了一种移动式电池储能直流融冰装置的系统结构以及功率/容量优化设计方法。以福建省部分山区冰区分布以及相关配电网覆冰线路融冰处理效果的计算分析可知,该方法具有可行性,通过精确计算直流热力融冰电流值可进一步优化移动式电池储能装置设计应用的经济性。目前移动式电池储能装置的优化设计与系统集成、灵活接入以及应用模式等相关研究尚处于发展阶段,缺乏系列化技术标准体系与应用规范,亟待深入研究。

5 未来电池储能电站的应用前景和集成应用模式展望

十二五期间,国内研发了兆瓦~十兆瓦级电池储能电站,主要用于解决发电侧的风电场、光伏发电站接入点的场站级出力品质控制问题,以提高接入点的并网友好性。然而,针对新能源发电基地级别的送出与消纳以及针对区域电网的调峰容量不足、暂态电压支撑等问题,十兆瓦级规模的电池储能电站已难以满足实际应用需求。因此,配置百兆瓦级的大型电池储能电站已成为当下新能源发展过程中的当务之急。

但是百兆瓦级电池储能电站有别于传统十兆瓦级储能电站,下述问题需重点关注并解决:1)储能子系统(单机)设计容量将提高,且储能子系统接入的电压等级也将提高,导致电站集成方式发生改变,现有十兆瓦级储能电站的集成方案与控制方法,不适用于百兆瓦级电池储能电站。2)百兆瓦级电池储能单元设备与控制单元增多,由于复杂多变的热、电、磁场等影响因素实时分布式到每个储能子系统,导致多机并联运行的储能子系统个体离散化问题突出,系统稳定与暂态转换过程中各储能子系统的性能差异及交叉耦合程度更高,相互影响与干扰更加复杂。3)十兆瓦级储能电站电池单体数达到十万级,与此相比,百兆瓦级电池储能电站电池单体个数将达到百万级,其通信结构更加复杂,对多个控制单元监测与协调控制难度加大。此外,百兆瓦级电池储能电站,对多个储能子系统控制单元间互知、储能子系统控制单元与上层控制层之间互知等提出了新的需求。而现有基于生产自动化系统的信息交互处理能力以及通信架构,将难以满足百兆瓦级储能电站全功率响应时间以及出力精度要求。因此,需提出适用于百兆瓦级储能电站的新型控制架构与整体控制方法。4)百兆瓦级电池储能电站的运行可靠性问题将更加突出,需研究储能子系统集群并联运行暂态过程以及一致性机理,以提升储能电站一致性控制与运行性能。

此外,传统电池储能系统因容量有限往往只能适应单一的控制目标,实现新能源并网或者电网辅助控制中独立的某项功能。而随着大规模、超/特大规模电池储能系统的规划和建设,以及分布式、移动即插即用式电池储能系统的不断发展,电池储能系统具备了多目标协同实现的能力,除了应具备新能源发电侧、配用电侧的应用功能外,还应在相应约束条件下尽可能地为电网的安全、稳定、经济运行提供积极作用。为此,笔者认为未来大规模电池储能系统的发展与应用需要从以下几个方面重点开展一些工作:

1)从大规模储能电池的设计、集成、安装、运行、监控等生产运行全过程,充分重视电池的安全问题,提出不同类型储能系统的安全边界,对可能出现的电池过热、变形、燃烧、电解液泄露等安全隐患设计具有充分可靠性的安全措施,避免安全生产事故的发生。

2)充分考虑大规模/超大规模电池储能系统数量庞大的储能单元及其网络拓扑结构的复杂性,提出站域集中管理与子系统分区自治相结合的大规模/超大规模电池储能电站优化控制架构,从根本上解决各储能单元差异性与应用目标统一性之间的矛盾,全面提升电池储能系统的综合管控能力。

3)有效利用大数据、云计算、物联网、人工智能等方法,兼顾历史和实时运行数据,实现电池储能系统实时运行状态诊断与分析,性能衰减与安全预警等,确保大规模集中/分布式电池储能电站安全、稳定、可靠运行。

4)针对大规模集中/分布式电池储能电站与集中/分布式新能源发电联合应用场景,考虑智能化运行调度、安全稳定控制、全寿命周期管理、多目标控制管理、运行效益最优等多方面需求,提出不同集成架构下的电池储能电站多目标协同优化控制方法,破解不同形式电池储能系统能量管理与科学控制的难题。

5)考虑大规模集中/分布式电池储能系统可能由不同种类、不同寿命阶段的电池储能单元/梯次利用动力电池储能单元等混合集成,研究并揭示上述多类型电池储能电站中不同类型储能单元健康状态、性能衰减、充放电倍率的差异特性,分析各电池单元动态连接后的充放电特性,提出针对不同类型电池储能系统的动态、智能、差异化的充放电控制方法,解决电池优化管理难题。

6)从电池储能模块级、装置级和系统级等不同层面,研究不同类型大容量电池储能技术的充放电特性、工况适用性、安全性及经济性评估方法,掌握先进大容量储能技术经济性的量化分析与综合评估方法,支撑电池储能技术的深入研究和工程化应用。

7)对集中式、分布式、可移动集装箱式等不同接入方式以及超/特大规模电池储能系统,构建信息物理充分融合的半实物仿真平台,结合大数据、云计算技术,形成电池储能系统的超级建模方法,验证储能在电网不同环节不同场景下的应用模式和控制方法。

8)大规模电池储能系统集中式接入以及分布式电池储能系统规模化聚合后,均将成为电网中一种不容忽视的可调控手段,通过研究电池储能系统与传统安稳控制系统的协调配合方案,将有效增强和改善电网安全三道防线在抵御电网风险,增强系统稳定性方面的能力。

9)结合分布式、集中式、可移动式等不同集成方式,发、输、配用电等不同应用场景,考虑以绿证、绿色标签等为体现形式的可再生能源配额制对上网电价、竞价机制、交易模式等的不同影响,开展基于电力市场环境的储能设备选址选点、规划布局、功率/容量优化配置以及商业化运行方法/模式研究,探索在电力市场辅助服务中如何提高储能系统规划布局与并网运行的技术经济性,并量化、规范相关指标。

6 结语

本文对电池储能系统的运行控制与应用方法开展了系统的研究和综述,主要结论如下:

1)分析了电池储能电站的发展概况,从国内外的工程实际应用情况出发,介绍了电池储能电站在新能源并网和电网安全控制等领域所发挥的重要作用。

2)从发电侧、输电侧、配电侧三个方面对电池储能电站在不同场景下的应用进行了详细的文献综述和分析,一定程度上阐明了电池储能电站在各研究领域内的研究现状、问题、及未来研究方向。依托大规模电池储能电站工程应用验证可知,目前国内十兆瓦级集中式电池储能电站响应时间小于1 s,出力控制偏差小于1.5%,满足平滑新能源发电出力、跟踪调度发电计划出力等并网应用需求。但是针对百兆瓦级电池储能电站需开展深入研究,以提高电站响应时间、爬坡率、出力控制偏差、能量可利用率等性能指标。

3)对未来电池储能电站的发展方向和潜在研究课题作出了展望,为电池储能电站在集成、控制和应用等方面的相关理论和技术发展提出了一些建议。

原标题:电池储能系统运行控制与应用方法综述及展望
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

电池储能查看更多>电池储能系统查看更多>电池储能电站查看更多>