北极星

搜索历史清空

  • 水处理
您的位置:电力输配电保护与控制技术正文

深度!电力系统次同步谐振/振荡的形态分析

2017-04-21 15:58来源:电网技术关键词:电力系统电力系统工程柔性交流输电收藏点赞

投稿

我要投稿

3 风电机组参与或引发的新型SSR/SSO

风电机组包括SEIG、DFIG、PMSG等不同类型,其中SEIG没有变流器接口,其在SSR/SSO中的作用与传统异步机类似,而DIFG和PMSG则部分或全部通过变流器与电网耦合,从而带来新的SSR/SSO现象,典型实例如:2009年10月美国德州某风电场的SSR事件[38],2011年以来我国河北沽源地区多次出现SSR[33-34],以及2015年我国新疆哈密地区的7.1次同步功率振荡事件。下面分别以后两者为例来揭示DFIG和PMSG型风电机组引发新型SSR/SSO的形态特征。

3.1美国德州风电机组SSCI事故

发生事故的风电场位于美国德克萨斯州南部,接入德克萨斯电力可靠性委员会电网(ElectricReliabilityCouncilofTexas,ERCOT)。截至2009年,德克萨斯州南部已有两条345kV串补线路,分别是朗山—爱丁堡线和纳尔逊夏普—里奥翁多线,正常运行时的串补度为50%。2个双馈风机风电场从位于朗山—爱丁堡线中点左右的阿霍电站接入电网。事故发生当天,朗山—爱丁堡线路发生故障,引起阿霍—纳尔逊夏普段跳闸,最终导致这2个风电场呈放射性接入ERCOT电网。由于线路长度缩短,并且串补装置靠近里奥翁多一端,因此与风电场相连的线路串补度骤升至75%,电网发生次同步振荡。在事故发生的短短0.4s内,电网电压电流畸变量就达到了300%,造成大量风机脱网和双馈电机的撬棒损坏[39-40]。事后,该事故被定性为双馈电机控制系统和串补线路之间的相互作用引发的发散振荡[38,40]。该SSR起源于串补线路的串补度上升,电网的L-C振荡为主导因素。

3.2沽源地区双馈风电机群-串补输电系统的SSR

图3 DFIG-串补电网的阻抗模型

沽源风电场位于我国河北省西北部地区,截至2014年底,总装机容量超过3000MW,主体机型为DFIG,风电场以放射式网架汇集到500kV沽源变电站,然后经同塔双回串补线路分别连接到蒙西电网和华北主网,对应线路串补度分别为40%和45%。自2011年串补投运,多次发生频率为3~10Hz的SSR现象,并造成多起风电机组因谐波过量而切机弃风的事故。大量分析表明,该SSR为双馈风机控制参与的IGE,也称SSCI。其机理可采用图3所示的等效阻抗模型来解释[41]:电网中的电感和串补电容构成L-C振荡,而DFIG机群在该振荡频率附近等效为由电阻(RDFIG)和电抗(XDFIG)串联而成的阻抗模型(impedancemodel,IM)[33]。由于其内嵌变流器控制的作用,在特定风速条件下,RDFIG将呈绝对值较大的负值,并克服掉网络电阻,从而使得整体电阻小于0,从而导致不稳定的次同步谐振。与传统IGE现象不同的是,DFIG的变流器、特别是转子侧变流器控制对负电阻的形成和大小有决定性作用。

上述理论分析得到了现场实测结果的验证。作为示例,图4给出了2013年3月19日发生不稳定SSR(频率为7.3Hz)时韩家村双馈风机风电场的实测次同步阻抗,可见它表现为正电抗和负电阻。这一SSR案例中,电网中线路电感与串补装置构成的L-C电气振荡是SSR的主导来源,而双馈风机的变流器控制对该振荡模式产生了放大作用(负电阻效应),从而造成了发散的功率振荡。很明显,它属于新分类方法中的第2类SSR形态。

图4 韩家村风电场的实测次同步阻抗(7.3Hz)

3.3 哈密地区直驱风电机群-弱交流电网的SSO

我国新疆哈密北部地区的风电装机容量持续增长,到2015年初已经超过3000MW,主体是基于永磁发电机(PMSG)的直驱风机,所接入的当地交流电网十分薄弱,风电汇集点的短路比在1.5左右,并经35/110/220/750kV多级远距离线路接入新疆主网。2015年以来,风电接入地区电网多次出现频率不固定(20~30多Hz)的功率振荡。2015年7月1日,次同步功率振荡甚至扩展到整个哈密电网,导致风电场约300km外的火电机组出现强烈轴系扭振而被切机。

理论分析表明[42-43],当直驱风电机组群接入弱交流电网时,机网相互作用的动态特性受变流器控制主导,可能产生次/超同步频率的不稳定模式,在该次/超同步频率下,直驱风电机组群的阻抗模型表现为负电阻、容抗特性,一旦在特定条件下,风电场等效负电阻克服了网络正电阻后,就会激发由系统电抗L和风电机等效容值C所决定频率的电气振荡,此即前述第3形态的机网耦合(虚拟阻抗)型SSR/SSO。当该电气振荡的频率跟临近汽轮发电机组的机械扭振频率接近互补时,将进一步在机组轴系激励出强烈的扭振,造成机组扭振保护动作而动作于切机。其原理如图5所示。

图5 新疆哈密地区SSR/SSO现象的电路机理

图6 直驱风电场的次/超同步阻抗(19/81Hz)

图6给出了某次振荡过程中某直驱风电场的实测阻抗特性,对应次/超同步频率为19/81Hz;可见次/超同步阻抗均呈负电阻、容抗特性,证实了理论分析结果。

3.4 风电机组相关SSR/SSO的共同特点

1)机理上均涉及多变流器间及其与电网之间的动态相互作用,跟汽轮机组轴系扭振引发的传统SSR/SSO有本质的区别。

2)振荡的频率、阻尼及稳定性受变流器和电网诸多参数,乃至风、光等外部条件的影响,具有决定因素复杂、大范围时变的特征。

3)变流器过载能力小,使得控制易于限幅,导致振荡往往始于小信号负阻尼失稳,而终于非线性持续振荡。

4多形态SSR/SSO的共存与互动

原标题:【热点专题论文】清华大学谢小荣等:电力系统次同步谐振/振荡的形态分析
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

电力系统查看更多>电力系统工程查看更多>柔性交流输电查看更多>