北极星

搜索历史清空

  • 水处理
您的位置:电力储能储能电池技术正文

崔屹教授最新综述:用于高能电池的金属锂负极的复兴!

2017-03-15 10:16来源:材料人作者:姚振国关键词:锂离子电池金属锂负极碳负极收藏点赞

投稿

我要投稿

6.使用固态电解质阻止枝晶蔓延

发展先进的固态电解质可以有效阻止锂枝晶的蔓延和副反应。这是一种直接的通过物理屏障阻止枝晶蔓延的方法。固态电解质有无机陶瓷电解质和固态聚合物电解质两类。对于固态电解质来说需要满足以下几点要求:(1)足够高的阻止枝晶蔓延的模量;(2)足够的锂离子电导率;(3)宽的电化学窗口;(4)与两电极间低的界面电阻和好的粘合作用。

通常情况下,无机陶瓷具有较好的离子电导率和机械性能,Li10GeP2S12和Li9.54Si1.74P1.44S11.7Cl0.3的离子电导率(图5a)甚至比液态电解质还高(表1)。无机陶瓷的模量很高,足以阻止锂枝晶的形成。但是必须在模量和表面粘附性之间取舍,模量高的粘附性则差。无机陶瓷的电化学窗口窄,循环的过程中还原反应可能在电极/电解质界面上发生从而形成锂离子阻断层,严重影响电池性能。

表1不同的电解质室温下的离子电导率、模量和电化学窗口的对比

固态聚合物电解质比液态电解质的离子电导率小2-5个数量级,其弹性模量也很低(<0.1GPa),简单地混合聚合物和锂盐并不能完全阻止锂枝晶的生长。然而,固态聚合物电解质与电极的粘附性更好,大多数固态聚合物电解质具有较好的柔韧性,利于实际生产。通过引入聚苯乙烯和单离子导体方法,可以同时提高电解质的机械性能和离子电导率(图5b)。为了解决模量和粘附性之间的困境,将毛发状的纳米SiO2颗粒与凝胶聚合物电解质交联,得到了机械强度和离子电导率均有提高的复合电解质(图5c)。

将固态聚合物电解质与锂离子电导率高的无机陶瓷结合是一种新的思路。将一个颗粒厚的Li1.6Al0.5Ti0.95Ta0.5(PO4)3与柔韧的聚合物结合,得到了灵活的且不产生枝晶的电解质(图5d)。最近,一种聚合物/陶瓷/聚合物三明治结构被提出(图5e)。在这种结构下,Li1.3Al0.3Ti1.7(PO4)3(LATP)与聚(乙烯醇)甲基醚丙烯酸酯结合,既有柔软的表面又有机械强度高的陶瓷体相。此外将一维Li3xLa2/3–xTiO3(LLTO)纳米线与聚丙烯腈混合可以提供连续的锂离子通道,室温离子电导率可达0.1mScm-1(图5f,g)。将石榴石相Li7La3Zr2O12(LLZO)纳米线与聚环氧乙烯(PEO)结合也有类似的效应。

图5无机和有机固态电解质

a.超级导体Li10GeP2S12的离子电导率的阿伦尼乌斯曲线。插图:Li10GeP2S12从c轴投影的晶体结构

b.40°C下,含31wt%P(STFSILi)的P(STFSILi)-b-PEO-b-P(STFSILi)和含25wt%PS的PS–PEO–PS的拉伸强度对比

c.毛发状纳米颗粒与聚苯醚交联的示意图,可被用来制备坚韧的膜

d.柔韧的、一个颗粒厚的Li1.6Al0.5Ti0.95Ta0.5(PO4)3-聚合物膜的横截面SEM图(上)和电子照片(下)

e.使用聚合物/陶瓷/聚合物三明治结构电解质的全电池示意图

f.与少量LLTO纳米线混合之后的聚丙烯腈(PAN)的阿伦尼乌斯曲线

g.聚丙烯腈(PAN)与LLTO纳米线混合可提供连续的离子通道

h.LLZO纳米线与PEO交联的示意图

7.用于金属锂的先进测试技术

测试技术的发展推动了对金属锂负极的研究。这些测试技术可被分为两类:一类是用来研究锂沉积的微观结构,另一类被用来观测表面化学。SEM、TEM、光学显微镜、AFM和NMR等被用来进行形貌观察,而FTIR、XPS、AES等则被用来进行表面分析。值得注意的是,早年的报道都是在静态下进行原位或者非原位分析,而使用现场原位分析则能提供锂负极在真实工作环境下更加有意义的动力学信息,然而现在的发展还不够成熟。

在开路电池中原位TEM测试技术最早被用来观测锂枝晶的形成和锂负极的电化学行为(图6a,b)。相似的,原位SEM也被用来观测锂的不均匀沉积。然而这些观察仅局限在离子液体或固态电解质中,因为液态电解质极易挥发。

最近,微型密封电化学液体电池被用于原位TEM观测电化学动力学和高时间和空间分辨率的定量测试(图6c)。观测商用碳酸盐电解质中SEI的生长和锂的电镀/剥离过程(图6d,e)或者使用暗场扫描透射电子显微镜估算SEI层的密度和富锂相的形成也是十分可行的。X射线技术也能为电池的电化学动力学提供有效的信息,例如,使用空间和时间分辨的同步辐射X射线衍射,可以得到锂-空气电池在充放电循环的不同阶段以及不同电极深度出的电极成分变化(图6f);利用同步辐射X射线衍射还能观测到锂-聚合物-锂对称电池中早期的枝晶形成(图6g)。此外,现场原位7Li-NMR谱,7Li-磁共振成像(MRI,图6h)和电子顺磁共振谱也是锂成核和生长的半定量分析手段。结合各种测试分析手段,包括现场原位以及事后分析,可以为锂的动力学行为提供越来越深刻的理解。

图6用于金属锂性能表征的先进测试技术

a.开路电池结构中原位TEM设置的示意图

b.开路电池结构用原位TEM观察锂在碳半球上的沉积

c.原位电化学液体电池TEM支架以及相应的液态电池设计

d.液体电池中原位TEM对SEI的观察

e.液体电池中原位TEM对锂枝晶生长的观察

f.用于现场原位微聚焦同步辐射X射线衍射观测的电池设计示意图

g.锂/聚合物/锂对称电池循环到不同阶段时的X射线层析成象法3维重现图像(左上,0Ccm−2;右上,9Ccm−2;左下,84Ccm−2;右下,296Ccm−2)

h.对称电池在锂电镀后的三维7LiMRI图。2D切片为水平方向(x-y)的横截面

【总结&展望】

尽管在锂负极的研究中取得了不错的进展,在其实际应用之前还要更为深入的探索。从金属锂负极目前存在的问题来看,今后可从以下几个方面进行研究:(1)2D和3D锂的形成;(2)金属锂的表征;(3)SEI和其他界面工程;(4)固态电解质;(5)全电池设计;(6)电池安全运行的智能设计。

总的来说,通过单一的策略来解决锂负极中的问题是不可能的,需要结合各种各样的方法才能最终使锂负极成为一种可行的技术。纳米技术的发展为这些问题的解决提供了新的可能,而先进的测试技术则为材料的设计提供了十分有用的信息。金属锂负极复兴在即,需要研究者在基础理论、材料设计和电池工程等方面投入更多的努力。

图7锂电池工程和全电池设计的展望

a.反应性的气体/蒸汽涂层

b.压层镀膜

c.自修复高分子涂层

d.多层涂层

e.金属锂全电池设计中的问题和可能的解决方法

相关阅读:

李泓:全固态金属锂电池或具备更多优势

原标题:崔屹Nature子刊最新综述:用于高能电池的金属锂负极的复兴!
投稿与新闻线索:陈女士 微信/手机:13693626116 邮箱:chenchen#bjxmail.com(请将#改成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

锂离子电池查看更多>金属锂负极查看更多>碳负极查看更多>