您当前的位置:北极星输配电网  > 电线电缆 > 正文

环保型高压直流电缆绝缘材料研究进展

北极星输配电网  来源:高电压技术    2017/2/17 14:24:36  我要投稿  
所属频道: 电线电缆  关键词:直流电缆 绝缘材料 输电线路

北极星输配电网讯:摘要:随着直流输电技术的发展,直流电缆输电方式在未来电能传输中将发挥重要作用,而直流电缆输电技术发展的关键在于电缆绝缘材料的突破。针对传统交联聚乙烯绝缘存在的不可回收再利用、工作温度有限和加工工艺复杂等缺点,开发环保型直流电缆绝缘材料显得尤为必要。为促进环保型直流电缆绝缘材料的研究和开发,对环保型直流电缆绝缘材料的发展现状和关键技术进行了系统评述。总结了目前常见的几种聚烯烃类环保型直流电缆绝缘材料的研究进展和聚烯烃材料的 3 种改性方法:共混改性、纳米改性和化学接枝改性,对比了环保型直流电缆绝缘材料和传统交联聚乙烯相比的优势。可以看出,以热塑性聚烯烃,特别是聚丙烯为基体的环保型直流电缆绝缘材料展现出了很好的应用前景,可以有效提高直流电缆的工作温度,简化加工工艺。环保型直流电缆绝缘材料开发过程中更应注重材料在高温下的性能,以发挥其优势从而提高直流电缆的运行温度,同时应该同步开展环保型直流电缆绝缘材料的老化研究。

0 引言1

相对于交流输电系统,直流系统输送容量更大,可以节省大量土地资源,而且直流系统无交流系统大范围的连锁故障风险,系统安全问题较小。因此直流输电技术将在远距离、大容量输电和分布式能源送出等方面被广泛采用。

然而,随着超/特高压输电线路的建设,传统的架空输电线路面临着严峻挑战,输电走廊问题已经成为超/特高压线路建设的关键问题[1]。在送端,许多水电站所在位置地形复杂多样,架空线路建设已经很难找到路径而且建设难度巨大。在受端,随着城市化进程的加快,特别是诸如长三角和珠三角等地,新建架空线路已经很难找到线路走廊,其它大型城市的输电走廊紧张问题也将逐渐显现[2]。 此外,远距离输电线不可避免地要经过江河湖泊、风景名胜、自然保护区等,架空线路不仅会破坏自然和人文景观,也会遇到大跨越等建设难题。同时随着海洋资源的开发,特别是海上风电和海岛供电的需求日益增加, 在海上建设架空线路几乎不可能。 因此,在当前高压线路建设过程中,急需发展地下或海下电缆输电技术解决送端、受端及特殊地段的输电线路走廊问题。

直流电缆在发展过程中出现了充油电缆、油纸绝缘电缆、浸渍绝缘电缆和塑料绝缘电缆。而随着三层共挤工艺的发展,塑料电缆已经成为直流电缆发展的主流,采用高压直流塑料电缆的柔性直流输电也是国际大电网倡导的主流方向[3]。目前最为常用的直流塑料电缆的绝缘材料为交联聚乙烯,该材料不仅保持了聚乙烯良好的电气绝缘性能,还增强了聚乙烯的耐热性,交联过程还使乙烯分子由链状结构转变为网状结构,使得聚乙烯在高温下的机械特性有了极大的提高。然而,交联过程使得聚乙烯从热塑性材料转变成了热固性材料,因此在电缆寿命到期后无法直接回收再利用,不具备绿色环保的特性,将不可避免地产生大量的废弃交联聚乙烯电缆绝缘材料从而产生环保问题。因此,研究绿色环保的、可回收且避免了复杂交联过程的高性能直流电缆绝缘材料体系,实现电缆绝缘材料的创新,是大容量直流塑料电缆必须解决的重大关键问题,可为电力电缆的大规模应用解决环保问题。

热塑性聚烯烃是首选的环保型直流电缆绝缘材料,常见的有聚乙烯、乙丙橡胶、聚丙烯等聚合物材料。聚乙烯电气性能优异,绝缘电阻和耐电强度较高,介电损耗小,但其较低的软化温度使其不适合在高温下工作,同时存在机械强度不高和使用寿命较短的问题。乙丙橡胶是以乙烯和丙烯为基础单体的合成橡胶,由于其优异的耐腐蚀性、耐老化性和电气绝缘性能,从而被广泛应用在电缆护套和电缆绝缘材料中。聚丙烯材料有着高熔点和优异的电气绝缘性能,然而聚丙烯在常温下的脆性导致其作为电缆绝缘材料难以使用。高压直流电缆绝缘材料开发的重点问题在于材料中空间电荷的积聚。直流电场作用下,随着加压时间的增加,由于材料中微观缺陷的存在,很容易在绝缘材料中引起空间电荷的积聚。空间电荷的大量积聚会使得绝缘材料中的电场发生畸变,引起局部电场分布不均,严重时会产生局部放电甚至绝缘击穿,严重影响电缆的使用寿命。空间电荷问题一直是限制高压直流电缆发展的一个重要因素。

为了给环保型高压直流电缆绝缘材料研究提供参考,本文系统综述了目前国内外在环保型高压直流电缆绝缘材料领域的研究进展,并对目前环保型直流电缆绝缘材料开发中存在的问题进行了探讨。

1 研究进展

目前对于环保型直流电缆绝缘材料的研究,主要集中在以下几种材料:以聚乙烯、聚丙烯和乙丙橡胶等为代表的热塑性聚烯烃;以聚乙烯基、聚丙烯基共混物等为代表的热塑性聚烯烃共混物;掺杂纳米填料的热塑性聚烯烃纳米复合材料;通过化学方法改性的聚烯烃材料。这些研究在提高材料的电气性能、机械性能和热性能上做了很多尝试和努力,并取得了一定成果,展现出了很好的应用前景。

1.1 热塑性聚烯烃

聚乙烯( polyethylene, PE)树脂有着良好的绝缘性能,但是由于熔点低,高温下机械性能有限,其使用温度不高。根据分子链结构、分子量和密度的不同,聚乙烯可分为线性低密度聚乙烯( linear low density polyethylene, LLDPE),低密度聚乙烯( low density polyethylene, LDPE)和高密度聚乙烯( high density polyethylene, HDPE)。 LDPE 具有较好的机械柔韧性,但其耐热性能和耐环境应力开裂性较差。而相比之下, HDPE 提高了耐热性能和耐环境应力开裂性。 LDPE 和 HDPE 曾应用于早期的聚合物塑料电缆中, 但随着交联聚乙烯 ( crosslinked polyethylene, XLPE)的出现, LDPE 和 HDPE 已经被 XLPE 所取代。然而, XLPE 会丧失 LDPE 和HDPE 的热塑性特性,从而难以回收再利用。

目前,聚乙烯作为环保型直流电缆绝缘材料,其研究主要集中在不采用化学交联的方式下如何提高其工作温度以及高温下的各项性能。韩国的 J. S.Lee 等在 2012 年研发了一种不需要化学交联反应,而只需要通过物理交联的 PE,该材料可回收再利用,并且展现出比 XLPE 更好的机械性能、击穿特性和长期稳定性[4]。

聚丙烯( polyethylene, PP)是另外一种潜在的环保型高压直流电缆绝缘材料,根据其分子链结构,可分为等规聚丙烯( isotactic polypropylene, iPP)、间规聚丙烯( syndiotactic polypropylene, sPP)和无规聚丙烯( atactic polypropylene, aPP)。聚丙烯具有优良的绝缘性能和抗腐蚀性能, iPP 的熔点高达160 ℃以上,长期使用温度达 100~120 ℃。聚丙烯最大的缺点在于耐寒性能差,低温下易脆断。

日本 Osaka University 的 K. Yoshino 等比较了iPP 和 sPP 的分子结构、微观形貌和电气性能,发现 sPP 的结晶温度更低,在高温下形成的球晶粒径比 iPP 小 20~30 倍,因而具有更好的热稳定性和电气绝缘性能。研究认为 sPP 是一种很好的环保型直流电缆绝缘材料,但其相对价格较高,是制约 sPP发展的因素[5]。为了综合 PE 和 PP 的优点,提出了通过乙烯和丙烯单体聚合制备乙烯丙烯共聚物( ethylene- propylene copolymer, EPC)。 该共聚物在一定程度上可增加 PP 的柔韧性和抗冲击性能,同时保持较高的工作温度。但如何控制 2 种单体的相对含量和单体在分子链上的排布规律,从而控制共聚物的性能仍然是一个有待深入研究的问题。

英国 Southampton 大学的 I. L. Hosier 研究了 4种不同乙烯含量的 EPC 和 sPP 以及 iPP 的热学、机械和电气性能,发现虽然每种样品都有一个或多个较好的性质,但是总体来说,没有一种样品能达到电缆绝缘材料的全部要求[6]。

1.2 热塑性聚烯烃共混

前文中关于单种聚烯烃材料的介绍,单纯的PE、 PP 或 EPC 作为环保型高压直流电缆绝缘材料均存在一定的问题,因此研究转向了通过热塑性聚烯烃共混来改善单种聚烯烃的性能。共混改性相对于共聚的优点在于: 操作工艺简单、 成本较为低廉。

根据共混组分主要成分,关于热塑性烯烃共混物的研究可以分为 PE 基材料和 PP 基材料两种。

1.2.1 聚乙烯基共混物

英国 Southampton 大学的 A. S. Vaughan 等研究了 HDPE/LDPE 共混物的特性,发现当两者质量比为 20:80 时,在冷却速率为 0.5~10 K/min 的条件下该共混物有着比 XLPE 更高的击穿强度和高温机械性能[7-8],研究还发现,将线性聚乙烯和支化聚乙烯共混并通过适当的形貌控制可使其表现出优于XLPE 的性能。 I. L. Hosier 等研究了不同醋酸乙烯( vinyl acetate, VA)质量分数乙烯–醋酸乙烯酯( ethylene-vinyl acetate copolymer, EVA)的熔点、结晶度、机械性能及击穿强度,发现随着 VA 质量

分数增加,上述性能均有所降低。但质量分数 20%的 HDPE 和 EVA 或 LDPE 共混可提高共混物的热机械性能、 力学性能和电气性能, 从而达到与 XLPE各方面相似的性能。研究认为以上共混物存在作为可回收电缆材料的可能性[9]。

H. K. Lee 等发现 EVA 和 HDPE 共混不仅可以改善 HDPE 在常温下的脆性,而且拥有良好的高温耐热和机械性能。采用共混而非交联的 HDPE/EVA共混物不仅降低了材料的成本,而且相比 XLPE 来说可以降低介电损耗,存在着作为环保型高压直流电缆绝缘材料的可行性[10]。 K. S. Suh 等发现当 EVA质量分数增加时, PE/EVA 共混物的异极性空间电荷积聚有所减少[11]。

1.2.2 聚丙烯基共混物

I. L. Hosier 等在研究 iPP 和 PEC 单独特性的基础上,研究了上述材料共混物的热学、力学和电学性能。研究发现 iPP 和 PEC 共混可以达到最优的效果,实验证明质量分数 50%的 iPP 与质量分数 40%的乙烯单体的 PEC 组成共混物有着最佳的综合性能[12]。

国内清华大学笔者所在的研究团队以及上海交通大学江平开教授的研究团队在聚丙烯基共混物材料方面做了很多研究。 他们研究了聚丙烯/弹性体( PP/POE)共混物作为高压直流电缆的可行性,制备了不同 POE 质量分数的 PP/POE 共混物。研究发现随着弹性体的混入,聚丙烯材料的机械性能得到了很大提高,展现出了很好的应用前景。虽然 POE的掺入使 PP 的熔点有所下降,但由于 PP 的熔点本身较高,所以 PP/POE 共混物仍然有着很好的热学性能, 能长期工作在较高温度下。 在电气性能方面,随着 POE 质量分数的增加, 材料的介电强度略有下降,总体上能达到交联聚乙烯的绝缘水平。但在直流高压作用下, PP 中的空间电荷积聚现象并没有得到改善[13]。表 1 给出了 PP/POE 和 XLPE 的性能对比。

分享到:
投稿联系:陈小姐  010-52898473  13693626116  新闻投稿咨询QQ: 1831213786
邮箱:chenchen#bjxmail.com(请将#换成@)
北极星输配电网声明:此资讯系转载自北极星电力网合作媒体或互联网其它网站,北极星输配电网登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考。
热点关注
《电力发展“十三五”规划(2016-2020)》

《电力发展“十三五”规划(2016-2020)》

11月7日,国家发改委、国家能源局召开新闻发布会,对外正式发布《电力发展十三五规划》。这是时隔15年之后,电力主管部门再次对外公布电力发展5年规划。上次发布需要追溯到2001年1月1日,当时的电力主管部门原国家经贸委发布了《电力工业十五规划》。期盼已久,《电力发展十三五规划(20

>>更多

新闻排行榜

今日

本周

本月

最新新闻

关闭

重播